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Abstract
Cognitive processes undergo various fluctuations and transient states across different temporal scales. Superstatistics are
emerging as a flexible framework for incorporating such non-stationary dynamics into existing cognitive model classes. In
thiswork,we provide the first experimental validation of superstatistics and formal comparison of four non-stationary diffusion
decision models in a specifically designed perceptual decision-making task. Task difficulty and speed-accuracy trade-off were
systematically manipulated to induce expected changes in model parameters. To validate our models, we assess whether
the inferred parameter trajectories align with the patterns and sequences of the experimental manipulations. To address
computational challenges, we present novel deep learning techniques for amortized Bayesian estimation and comparison of
models with time-varying parameters. Our findings indicate that transition models incorporating both gradual and abrupt
parameter shifts provide the best fit to the empirical data. Moreover, we find that the inferred parameter trajectories closely
mirror the sequence of experimental manipulations. Posterior re-simulations further underscore the ability of the models to
faithfully reproduce critical data patterns. Accordingly, our results suggest that the inferred non-stationary dynamics may
reflect actual changes in the targeted psychological constructs. We argue that our initial experimental validation paves the
way for the widespread application of superstatistics in cognitive modeling and beyond.

Keywords Decision-making · Dynamics in cognition · Cognitive process models · Superstatistics ·
Amortized Bayesian inference

Introduction

The human brain operates in a perpetual state of activity,
whether it is focused on a particular task or wandering
in the inner world of thoughts. This activity reflects the
non-stationary nature of neuronal dynamics, which are char-
acterized by a complex interplay between transient, evoked
states, and ongoing spontaneous fluctuations (Galadí et al.,
2021; Melanson et al., 2017). The complex cognitive pro-
cesses that emerge from this neuronal activity also tend to
exhibit non-stationary dynamics (Van Orden et al., 2003;
Wagenmakers et al., 2004; Sebastian Castro-Alvarez &
Tendeiro, 2023; Craigmile et al., 2010). In other words,
proverbial cognitive processes, such as attention, memory,
and decision-making, are not constant over time, but instead
undergo fluctuations, shifts, and alterations in their functions
(Schurr et al., 2024).
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Lapses of attention are a canonical cause of such non-
stationary dynamics. Even when actively engaged in a task,
our focus can drift or momentarily falter (Weissman et al.,
2006). Moreover, our capacity to sustain attention and con-
centrate may vary, influenced by factors such as fatigue,
motivation, and external distractions (Esterman & Rothlein,
2019; Ratcliff & Van Dongen, 2011; Walsh et al., 2017).
These fluctuations can have a significant impact on our cog-
nitive functioning, but they are often overlooked or simplified
in traditional models of cognition. And while these often
assume cognitive processes to be stable and time-invariant,
there has been a growing recognition that traditional mod-
els do not fully capture the complexity and variability of
real-world cognition (Schumacher et al., 2023; Beer, 2023;
Evans and Brown, 2017; Li et al., 2023; Kucharský et al.,
2021; Gunawan et al., 2022; Cochrane et al., 2023). Common
approaches to address variability in the components of cog-
nitive models can be broadly classified into four categories:
stationary variability, trial binning, regression approach,
and frontend-backend models.
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Fig. 1 A conceptual illustration of the five main approaches to model
temporal variation in the parameters θ of a cognitive model G. A
Stationary variability, also known as inter-trial variability, assumes
that parameter values fluctuate around a stable mean. B Trial binning
involves organizing the data into distinct bins and fitting a cognitive
model G to each bin individually. C Regression approach employs
time (and sometimes additional contextual variables) as predictors for

the parameters θ . D Frontend-backend models employ a mechanistic
model, referred to as the frontend, to elucidate the dynamics of the
parameter of the cognitive model (i.e., the backend). E Superstatistics
involve a superposition of multiple stochastic processes operating on
different temporal scales. They comprise a low-level observation model
G and a high-level transition model T that specifies how the parameters
θt evolve stochastically

The first approach assumes random fluctuations around a
stablemean, referred to as stationary variability (see Fig. 1A).
A prominent example of this approach is the “full” dif-
fusion decision model (DDM), which allows for inter-trial
variability of its core parameters (Ratcliff & Rouder, 1998;
Ratcliff and Tuerlinckx, 2002). However, stationary inter-
trial variability mainly improves in-sample model fit and
cannot identify systematic changes or sudden shifts in model
parameters. Moreover, the resulting model family still treats
behavioral data as independent and identically distributed
(IID) responses, making it unsuitable for investigating sys-
tematic changes in cognitive constructs.

Another approach for detecting systematic changes in cog-
nitive model components is trial binning (Evans and Brown,
2017; Evans & Hawkins, 2019; Kahana et al., 2018). This
method involves organizing data into discrete bins and then
applying a stationary model to each of these data subsets
separately (see Fig. 1B). One can then examine variations
in parameter estimates across these bins. The challenge in
employing this approach is selecting the number of time
steps within each bin, which introduces an unwelcome trade-
off between temporal resolution and estimation quality. For
instance, if only a few time steps are chosen, the analysis
can yield relatively fine-grained, but very uncertain estimates
due to the low number of data points. A further shortcom-
ing of trial binning is that estimates within a specific bin are
not informed by data from neighboring bins. However, the
appeal of dynamic modeling lies in the distinctive capability
to utilize both past and future data to constrain the estimated
parameter trajectories.

The third approach involves a generalized linear model
(GLM) with time (and possibly other contextual factors) as a
predictor of model parameters (Cochrane et al., 2023; Evans

et al., 2018). The GLM approach is more appealing than trial
binning, as it can detect linear or non-linear changes inmodel
parameterswithout loss of resolution (see Fig. 1C). However,
the underlying regression functionmakes strong assumptions
about the nature of the relationship between model parame-
ters and time. Thus, even though a modeler will typically fit
and compare a few plausible specifications (e.g., linear vs.
exponential), it is often difficult to determine all plausible
specifications a priori, and the overall flexibility of the GLM
model as a process characterization remains severely limited
(Gunawan et al., 2022).

Differently, the frontend-backend approach aims to account
for changes in model parameters, while providing a mecha-
nistic explanation for the dynamic nature of the target system
(see Fig. 1D). Here, the backend model pertains to the cog-
nitive model which formalizes how the behavioral data are
generated (e.g., a DDM). The frontend constitutes a mecha-
nistic model, elucidating how the parameters of the backend
model adapt over time, in different contexts, and in response
to additional factors (Fontanesi et al., 2019; Osth et al.,
2018; Schumacher & Voss, 2023; Brown et al., 2008). This
approach has several advantages, as it not only accommo-
dates the dynamic nature of the parameters, but also provides
amechanistic description for their temporal variation through
a set of static parameters and deterministic functions. For
instance, there has been a recent trend to use reinforcement
learning models as a frontend model to inform changes in
DDM parameters due to reward-based learning (McDougle
& Collins, 2021; Miletić et al., 2021; Fontanesi et al., 2019).
Nevertheless, detailed frontend models are often challenging
to develop, estimate, and compare.

Recently, we proposed an alternative approach that infers
non-stationary parameter trajectories directly from the data,
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while imposing minimal constraints on how parameters
change over time (Schumacher et al., 2023). Our approach
leverages a framework known as superstatistics (Beck &
Cohen, 2003; Beck, 2004; Mark et al., 2018), which can
be viewed from the lens of state space models and involves
a superposition of multiple stochastic processes operating
on distinct time scales (see Fig. 1E). At its core, this model
comprises a low-level observation model and a high-level
transition model. The former describes how data at a specific
time point is generated, akin to the backend model. Like the
frontend approach (cf. Fig. 1D), the transition model charac-
terizes how the parameters change over time. However, the
transition model in superstatistics is inherently a stochastic
process, exemplified, for instance, by a Gaussian random
walk, a regime-switching process, or a mixture between
smooth and abrupt transitions.

The superstatistics approach effectively addresses the lim-
itations of prior methodologies. Unlike stationary models,
superstatistical models can readily generate non-stationary
variations in the parameters of the low-level model, facili-
tating gradual or sudden transitions between different states.
Furthermore, parameter estimates are contingent on past data
points, thereby treating the data no longer as IID. In contrast
to the trial-binning approach, models within the superstatis-
tics framework leverage the entirety of available data, miti-
gating concerns about insufficient data points for parameter
estimation. Different from GLM approaches, our super-
statistics method imposes minimal assumptions on potential
parameter trajectories, making it significantly less restrictive.

In contrast to frontend-backendmodels, superstatistics donot
offer mechanistic explanations for parameter dynamics but pro-
vide greater flexibility in their estimation. Although mech-
anistic explanations are central to psychological research,
there are cases where suitable explanations are lacking
or are applicable only to specific parameters. Therefore,
we consider these two approaches as complementary. The
superstatistical framework takes a bottom-up, exploratory
approach, functioning as a tool for generating hypotheses. In
subsequent stages, one could potentially formulate plausible
frontend models based on insights from parameter trajec-
tories inferred with a superstatistical model. Additionally,
superstatistical models can serve as benchmarks for testing
and validating competing frontend-backend models by com-
paring resulting parameter trajectories from both methods.

Having laid out the potential benefits of the superstatis-
tics framework and its applicability in the realm of cognitive
process models (Schumacher et al., 2023), a pivotal ques-
tion arises: Do the inferred parameter trajectories genuinely
reflect shifts in the cognitive constructs they aim to repre-
sent, or are they merely a modeling artifact? To address
this inquiry, we perform an experimental validation study
in which we manipulate the experimental context in a man-
ner that allows us to confidently anticipate how individuals

and, consequently, their inferred cognitive constructs, will
respond. In other words, if the inferred parameter time series
mirror the alterations in the experimental context, we gar-
ner substantial evidence that these trajectories indeed reflect
changes in the psychological constructs.

Throughout, we employ the well-established 4-parameter
diffusion decision model (DDM; Ratcliff, 1978) as a low-
level observation model. The DDM is a mathematical model
that simultaneously accounts for response time (RT) and choice
data obtained from two-alternative decision tasks. Funda-
mentally, it posits that, in forced-choice binary decision tasks,
individuals accumulate evidence for the decision alternatives
until a certain threshold is met, triggering a decision. Each
of the DDM’s four core parameters corresponds to a specific
psychological construct: (i) the drift rate v signifies the aver-
age speed of information uptake; (ii) the threshold a serves
as a proxy for decision caution; (iii) the relative starting point
β represents a priori decision preferences; and (iv) the addi-
tional constant τ accounts for the duration of all processes
taking place prior and following a decision, such as stimulus
encoding or motor action (but see Verdonck et al., 2021).

A primary reason for our choice of the DDM as the obser-
vation model lies in its rigorous prior validation (Voss et al.,
2004; Lerche & Voss, 2019; Arnold et al., 2015). These
prior studies have convincingly demonstrated that theDDM’s
parameters are valid reflections of the intended psychologi-
cal constructs. Moreover, the manipulation of experimental
conditions leading to systematic alterations in specific DDM
parameters is well documented and comprehensively under-
stood (Ratcliff & McKoon, 2008). For example, varying the
difficulty of an experimental task alters the drift rate parame-
ter, whereas providing verbal instructions to prioritize either
speed or accuracy during task-solving leads to observable
shifts in the threshold parameter and sometimes also in the
non-decision time (Lerche & Voss, 2018).

In this study, we focus on the aforementioned experimen-
tal manipulations targeting the drift rate and the threshold
parameters. We employed a color discrimination task, which
was also utilized in the validation study by Voss et al. (2004).
During this task, individuals must decide whether there are
more blue or more orange pixels in a patch of pixels. The task
difficulty can be easily manipulated by adjusting the ratio of
blue and orange pixels. The farther the ratio is from 1:1, the
easier the task becomes. Additionally, we manipulated the
emphasis on speed or accuracy by verbally instructing par-
ticipants to prioritize one over the other.

Systematic changes in cognitive model parameters can
appear in different ways, ranging from changing slowly
and gradually to more rapid and large shifts. In our experi-
ment, we focus on two different types. Firstly, task difficulty
changes frequently to the next easier or harder level, imitat-
ing gradual changes. Secondly, the speed-accuracy emphasis
changes less regularly after each trial block, resembling
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sudden shifts. The primary aim of our experiment is to
investigate whether the parameter trajectories inferred with a
non-stationary DDM (NSDDM) match these changing pat-
terns of the experimental conditions. Specifically, we expect
the drift rate parameter to mirror the gradual changes in the
task difficulty. Additionally, the threshold parameter should
show sudden shifts when the priority switches between speed
and accuracy. It is crucial to understand that in this appli-
cation, the NSDDM does not have information about the
experimental context and has to infer the parameter trajec-
tory solely from the behavioral data.

When dealing with various types of fluctuations, a crucial
question arises: What kind of transition model is most suit-
able for capturing the expected dynamics? To address this,
we implemented different NSDDMs that vary only in their
transition model for the drift rate and threshold parameter.
Specifically, we compare four distinct transition models: a
Gaussian randomwalk, amixture of aGaussian randomwalk
and uniformly distributed regime changes, a Lévy flight, and
a regime-switching function, where parameters either remain
constant from the previous time step or shift uniformly. These
four transition models represent different prior assumptions
about plausible parameter trajectories. They vary in complex-
ity (i.e., the number of high-level parameters and functional
expressiveness) and their ability to account for different types
of temporal shifts.

Performing Bayesian model comparison and parameter esti-
mationwithsuperstatisticalmodelscanbecomputationallychal-
lenging (Schumacher et al., 2023). Therefore, we employ
simulation-based inference (SBI, Cranmer et al., 2020) as
implemented in the BayesFlow framework (Radev et al.,
2023). BayesFlow enables us to carry out a principled
Bayesianworkflowutilizingsimulation-basedcalibration (SBC,
Talts et al., 2020; Säilynoja et al., 2022) and other validation
methods (Schad et al., 2021; Gelman et al., 2020) that would
otherwise be excessively time-consuming. The contributions
of the present study can be summarized as follows:

1. We perform an experimental validation of different non-
stationary instantiations of the diffusion decision model.

2. We propose an amortized method for Bayesian model
comparison of non-stationary models via deep ensembles.

3. We showcase the potential of amortized Bayesian infer-
ence for increasing the aspirations of cognitivemodeling.

Materials andMethods

Participants

A total of 14 participants (9 female, 5 male) were recruited for
the experiment. The participants had an average age of 23.14
years (SD = 1.29, Range = [22, 26]). Every individual

provided informed consent to participate in the study, and the
research protocol received approval from the local ethics com-
mittee. The entire study was conducted in accordance with
the ethical principles outlined in the Helsinki Declaration.

Task

The participants completed a total of 800 trials in a color dis-
crimination task, including 32 practice trials. In each trial,
individuals were presented with a rectangular patch contain-
ing blue and orange pixels and had to determine whether
there were more blue or orange pixels. Prior to the patch
presentation, a fixation cross was displayed for 300 ms. All
stimuli were presented on a gray background.

Task difficulty was manipulated by varying the proportion
of blue/orange pixels in the patch. The following ratios were
utilized: 50.5:49.5, 52.25:47.75, 53.5:46.5, and 55:45. Half
of the trials featured orange as the dominant color, while
the other half featured blue. The difficulty level remained
constant for either 8 or 16 trials before transitioning to the
next level of difficulty.

In addition to manipulating task difficulty, participants
received two types of instructions which changed every 48th
trial. In the “accuracy” condition, individuals were instructed
to prioritize accuracy in their responses. Conversely, in the
“speed” condition, participants were directed to emphasize
speedwhilemaintaining a reasonable level of accuracy. Feed-
back was provided after each trial to make participants aware
of their performance: a green cross for correct responses,
a red minus for incorrect responses, and a red clock for
responses slower than 700 ms in the speed condition.

Superstatistics Framework

To represent non-stationary changes in DDM parameters,
we adopt a superstatistics framework (Beck & Cohen, 2003;
Mark et al., 2018). Within this framework, each generative
model comprises (at least) a low-level observation model G
characterized by time-dependent local parameters θt ∈ R

K

that vary according to a high-level transition model T with
static high-level parameters η ∈ R

D . These models simulate
parameters and observable data xt ∈ X according to the
following general recurrent system:

θt = T (θ0:t−1, η, ξt ) with ξt ∼ p(ξ | η), θ0 ∼ p(θ)

xt = G(x1:t−1, θt , zt ) with zt ∼ p(z | θt ),
(1)

whereT represents an arbitrary high-level transition function
parameterized by η, and G is a (non-linear) transformation
that encapsulates the functional assumptions of the low-level
model. The random variates ξt and zt govern the stochastic
nature of the twomodel components through noise outsourc-
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Fig. 2 An example illustration of the four high-level (transition) models considered in our study, governing the temporal variation of a hypothetical
low-level model parameter

ing. The initial parameter configuration θ0 adheres to a prior
distribution θ0 ∼ p(θ) encoding the available information
about feasible starting parameter values.

The above formulation is very abstract and general,
highlighting the flexibility of the superstatistics framework.
Moreover, it does not assume that the corresponding transi-
tion or likelihood densities, given by

T(θt | η, θ0:t−1) =
∫

p(θt , ξ | η, θ0:t−1) dξ (2)

p(xt | θt , x1:t−1) =
∫

p(xt , z | θt , x1:t−1) dz, (3)

are tractable or available in closed-form, situating our
approach in the context of simulation-based inference (SBI,
Cranmer et al., 2020). Here, we build on SBI with neural
networks (Ardizzone et al., 2018; Greenberg et al., 2019;
Radev et al., 2020) as a principled approach to perform fully
Bayesian inference by using only samples from the gener-
ative system defined by Eq.1. Importantly, our estimation
methods overcome key limitations of previous approaches
related to the curse of dimensionality (Mark et al., 2018).

Low-Level Model

In this work, we use the same standardDDM implementation
as a low-level observation model G for all NSDDMs. The
low-level dynamics of the evidence accumulation process are
described by the following stochastic ordinary differential
equation:

dxn = vdts + z
√
dts with z ∼ N (0, 1). (4)

Accordingly, the evidence xn on a given trial n follows a
random walk with drift v and Gaussian noise z, where ts rep-
resents time on a continuous time scale. The core assumption
of the DDM is that evidence is accumulated with a fixed rate
v until one of two thresholds, a or 0, is reached, and the
corresponding decision Dn is made:

Dn =
{
1, if xn ≥ a

0, if xn ≤ 0
. (5)

Furthermore, the DDM incorporates an additive constant τ ,
which represents the time allocated to all non-decisional
processes (i.e., stimulus encoding and motor action). Con-
sequently, the DDM encompasses three distinct free param-
eters, namely θ = (v, a, τ ). We fixed the starting point of
the evidence accumulation process at a/2 since, in our case,
the two boundaries of the accumulation process correspond
to correct and incorrect responses, respectively. Thus, it is
unwarranted to estimate any potential a priori bias towards
either of these boundaries (Voss et al., 2013).

High-Level Models

We formulate and compare four different high-level tran-
sition models, denoted as T1,..., T4, which govern the
trial-by-trial changes in local DDM parameters θ1:T . These
transition models vary in flexibility in allowing changes to
the low-level parameters and their underlying complexity,
including the number of high-level parameters involved (see
Fig. 2 for an exemplar trajectory generated by each transi-
tion model). To ensure that the low-level parameters remain
within plausible ranges, we impose lower and upper bounds
on their trajectories.1 Specifically, we set the upper bounds
for the parameters v, a, and τ to 8, 6, and 4, respectively.
Additionally, since negative parameter values are not mean-
ingful for our DDM specification, we set the lower bounds
for all parameters to 0. For simplicity, our transition models
do not assume dependencies between the trajectories of the
local DDM parameters a priori. We note that DDM parame-
ters are typically found to be correlated (Boehm et al., 2018),
and thus, priors with less entropy (e.g., correlated Gaussian
random walk) are also plausible.

Random Walk The first transition model (T1) convolves the
low-level model’s parameters with a Gaussian distribution,
resulting in a gradual change that follows a random walk:

T1(θk,t | θk,t−1, σk) = N (θk,t | θk,t−1, σk), (6)

where k denotes the individual model parameters. According
to this transition model, the current value of each parameter

1 To facilitate gradient-based training we transformed the parameters
to an unbounded space via scaling.
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θk,t is only influenced by its previous value θk,t−1, generating
more or less auto-correlated and gradual changes.

Mixture Random Walk The second transitionmodel (T2) cor-
responds to amixture distributionbetween a randomwalk (cf.
Equation (6)) and uniformly distributed shifts:

T2(θk,t | θk,t−1, ρk, σk, ak, bk) =
ρk N (θk,t | θk,t−1, σk) + (1 − ρk)U(ak, bk), (7)

where ρ indicates the probability of the type of change (grad-
ual change or shift) as a mixing coefficient for the two states.
The upper and lower bounds of the uniform distribution,
denoted asa andb, are set to cover plausible parameter ranges
and are not treated as free parameters themselves.

Lévy Flight The Lévy flight transition model (T3) is similar
to the Gaussian random walk. However, instead of assuming
normally distributed noise, it assumes an alpha-stable tran-
sition for each component of θ :

T3(θk,t | θk,t−1, σk, αk) =
Alpha-Stable(θk,t | θk,t−1, σk, β = 0, αk), (8)

where 0 < α ≤ 2 governs the heaviness of the noise distri-
bution’s tails. If αk = 2, then the distribution is equivalent to
a Gaussian distribution. Notably, as the value of α decreases,
the distribution’s tails get heavier, allowing for larger shifts in
the parameter values. When simulating from the Lévy flight
transition model, we use a scale of σk/

√
2, such that the cor-

responding Gaussian distribution for αk = 2 has a standard
deviation of σk .

Regime Switching Finally, the regime-switching transition
model (T4) is a simpler version of the mixture random walk.
The parameter’s trajectory adheres to one of twopossibilities:
it either maintains its previous value or undergoes a uniform
shift:

T4(θk,t | θk,t−1, ρk, ak, bk) =
ρk δ(θk,t − θk,t−1) + (1 − ρk)U(ak, bk), (9)

where δ(·) is the Dirac delta distribution indicating that the
parameter either does not change at all with probability ρ or
undergoes a sudden change with probability 1 − ρ.

Strictly speaking, some of the above transition models
can effectively be transformed into others by employing spe-
cific high-level parameter configurations. For instance, the
mixture random walk with σ = 0 reduces to the regime-
switching transition function. Conversely, when ρ = 1, it
reduces to a simple Gaussian random walk. Also, the Lévy
flight transition model with α = 2 turns into a random walk
transition function. The mixture random walk and the Lévy
flight transition function have two high-level parameters and

can thus be regarded as more complex and more flexible than
the other two transition models, which only have a single
high-level parameter. Notably, the random walk transition
model is the only one that cannot generate relatively large
sudden shifts in parameter values.

Model Comparison Setup

One of the major aims of this study is to compare four
NSDDMs sharing the same low-level diffusion model but
differing in their assumptions about the type of stochastic
variation of the drift rate (v) and threshold (a) parameters.
All four NSDDMs employ the same Gaussian random walk
model T1 for the non-decision time parameter (τ ). We base
this decision on previous research (Schumacher et al., 2023)
and the rationale of our experimental manipulations, which
should not imply sudden large shifts in the τ parameter.
For M1, the drift rate and threshold parameter also fol-
low a Gaussian random walk, resulting in three high-level
parameters, η = (σv, σa, στ ). In M2, both v and a follow
a mixture between a Gaussian random walk and uniform
shifts (T2), which results in a total of five high-level param-
eters, η = (σv, σa, στ , ρv, ρa). In contrast,M3 introduces a
trajectory for the drift rate and threshold parameters charac-
terized by a Lévy flight (T3), which has five free high-level
parameters, η = (σv, σa, στ , αv , αa). Lastly, for M4, the
two parameters v and a either remain the same as in the
previous time point or shift uniformly (T4). This model has
three high-level parameters,η = (στ , ρv, ρa). A listing of the
weakly informative prior distributions assigned to the model
parameters can be found in the Supplementary Material.

It is noteworthy that these transition models not only dif-
fer in their parameter counts but also in the degree to which
they can generate diverse parameter trajectories. Thus, our
Bayesian model comparison approach relies on a more gen-
eral notion of model complexity as embodied by the prior
predictive distribution (i.e., marginal likelihood). The next
section discusses Bayesian model comparison from the lens
of amortized Bayesian inference as an efficient approxima-
tion method.

Amortized Bayesian Inference

Amortized Bayesian inference (ABI) is a flexible framework
for estimating, comparing, and validating complex models
through simulation-based training of specialized neural net-
works (Radev et al., 2023). ABI consists of (i) a training
phase where the networks learn a surrogate distribution and
(ii) an inference phase where the networks infer the target
quantities (e.g., model parameters or model posterior prob-
abilities) in real-time for any new data set supported by the
model(s). The neural networks are trained purely on sim-
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Fig. 3 A conceptual illustration of our amortized Bayesian inference
training setup. A Parameter estimation: A recurrent summary net-
work processes the synthetic time series x1:T and learns maximally
informative temporal summary statistics x̃1:T . An inference network
(i.e., normalizing flow) learns to approximate the joint posterior distri-
bution of time-varying low-level parameters θ1:T and static high-level
parameters η given the learned summaries. B Model comparison: A

transformer summary network consumes time series simulated from
competing models and learns maximally informative summary vectors
x̃ . An inference network (i.e., a probabilistic classifier) learns to approx-
imate posterior model probabilities (PMPs) given the summary vectors.
Once trained, the networks can be efficiently validated using principled
Bayesian methods and applied to the observed data

ulations from the generative model and do not require an
explicit likelihood or numerical integration. Thus, ABI re-
casts expensive Bayesian inference into a neural network
prediction task, such that sampling from the target posterior
and model refits happen almost instantaneously. In a pre-
vious study, we showed that ABI drastically outperforms
traditional Bayesian methods for estimating time-varying
parameters in terms of computation time (Schumacher et al.,
2023).

Amortized Parameter EstimationOur deep learning approach
for jointly estimating time-varying and static parameters fol-
lows Schumacher et al. (2023), who extend ideas from ABI
with static parameters (Radev et al., 2020; Gonçalves et al.,
2020) to non-stationary Bayesian models. Accordingly, our
goal is not only to infer the trajectories of all three model
parameters {θt }T

t=1 but also to estimate the posterior distri-
bution for the static high-level parameters η of the transition
model. Thus,we are interested in recovering the full joint pos-
terior p(θ1:T , η | x1:T ) from the observed time series {xt }T

t=1:

p(θ1:T , η | x1:T ) ∝ p(η, θ0) p(x1 | θ1)×
T∏

t=2

p(xt | θt , x1:t−1)

T∏
t=1

T(θt | η, θ0:t−1), (10)

where p(η, θ0) is the joint prior over high-level parameters
and initial low-level parameter values. The joint prior typ-
ically factorizes as p(η, θ0) = p(η)p(θ0), assuming that η

and θ0 are independent in the absence of any information.
Even though our SBI method is applicable to any model of
the general form inEq. 10, our low-level (Low-LevelModel)
and high-level (High-Level Models) specifications lead to a
simplified formulation

p(θ1:T , η | x1:T ) ∝ p(η, θ0)

T∏
t=1

p(xt | θt )

T∏
t=1

T(θt | η, θt−1). (11)

The simplified formulation follows from the fact that our
transition models share the Markov property and the DDM
likelihood depends on time only through the current param-
eter θt in the latent trajectory θ1:T .

Following the typical ABI offline training setting (see
Fig. 3A for a conceptual illustration), we generate a data
set of simulated data sets, D = {η(b), θ

(b)
1:T , x (b)

1:T }B
b=1, and

use the simulated data to train a specialized neural network,
Fψ(θ1:T , η; x1:T ), which approximates the full joint poste-
rior (i.e., a normalizing flow, see Papamakarios et al., 2021).
In particular, we minimize the following loss in expectation
over the full non-stationary generative model (i.e., the right-
hand side of Eq. 10)

L(ψ) = E(η,θ1:T ,x1:T )∼D
[− log qψ(θ1:T , η | x1:T )

]
, (12)

where we approximate the expectation over p(θ0) p(η, θ1:T ,

x1:T ) via our training setD and regularize against overfitting
with standard techniques, such as dropout and weight decay.
It is also possible to run the simulator(s) indefinitely and
perform online training using on-the-fly simulation (Radev
et al., 2020). In fact, this approach should be preferred for
fast simulators, as it makes overfitting hardly possible. Thus,
online learning is the approach we pursue for training the
neural approximators.

In the context of dynamic Bayesian models, we have
many choices on how to factorize the joint posterior (Särkkä,
2013). The two most common choices are to approxi-
mate the filtering distribution or the smoothing distribution
(Mark et al., 2018). The filtering distribution corresponds
to an online analysis, where the low-level parameters θt at
time step t are only informed by past data points. Differ-
ently, the smoothing distribution conditions the posterior of
θt on all past and future data points and provides poten-
tially sharper estimates. Thus, in this study, we exclusively
target the approximate smoothing distribution due to its
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superior parameter recoverability in an offline analysis.2

In practice, we employ unidirectional or bidirectional long
short-term memory (LSTM) networks (Gers et al., 2000)
withmany-to-many input–output relationships as a backbone
for approximating the filtering or smoothing distribution,
respectively. We then train four separate neural approxima-
tors such that each network becomes an “expert” in inferring
the smoothing distribution of the corresponding NSDDM.
The Supplementary Material contains more details on the
neural network settings and training hyperparameters.

Amortized Model Comparison. To conduct a comparative
analysis of the four NSDDMs, we focus on Bayes fac-
tors (BFs) and posterior model probabilities (PMPs). These
measures can be classified as prior predictive, since they
depend on the marginal likelihood (see below) as a proxy
for a model’s generative diversity, penalizing prior complex-
ity (Kass & Raftery, 1995; MacKay, 2003). The efficacy of
these measures has been demonstrated in a wide range of
psychological modeling studies (Heck et al., 2023). Never-
theless, an ongoing debate surrounds the preference between
the two (van Ravenzwaaij & Wagenmakers, 2022; Tendeiro
& Kiers, 2019). Since BFs and posterior odds (i.e., ratios
between PMPs) are equivalent when all models are assumed
to be equally likely a priori, we estimate and analyze both
quantities in our study.

Following the common Bayesian terminology (MacKay,
2003), we can refer to the four competing models through
an index set M = {M1,M2,M3,M4}. Prior predictive
Bayesian model comparison aims to find the simplest most
plausible model within M. To this end, we can compute
PMPs for each of the competing models

p(M j | x1:T ) = p(x1:T |M j ) p(M j )

Ep(M) [p(x1:T |M)]
, (13)

where p(M) refers to the prior distribution over the discrete
model space. The marginal likelihood p(x1:T |M j ) plays a
crucial role in Eq.13 and can be expressed by integrating out
all parameters of the joint model,

p(x1:T |M j ) =
∫

p(η, θ0)

T∏
t=1

p(xt | θt ,M j )

T∏
t=1

T j (θt | η, θt−1) dη dθ0, . . . , dθT . (14)

Importantly, since the marginal likelihood averages the like-
lihood over the joint prior, it automatically incorporates
a probabilistic Occam’s razor, favoring models with con-
strained prior predictive flexibility. When comparing a pair

2 Note that Schumacher et al. (2023) focused exclusively on the filtering
distribution in their benchmarking experiments.

of competingmodels,M j andMi , we can compute the ratio
between their respective marginal likelihood,

BF j i = p(x1:T |M j )

p(x1:T |Mi )
. (15)

This ratio is referred to as the Bayes factor (BF). Consequently,
a BF j i > 1 signifies a relative preference for model j over
model i based on the given data x1:T (Kass & Raftery, 1995).

Unfortunately, the marginal likelihood is notoriously
hard to approximate (Gronau et al., 2017) and even dou-
bly intractable for mechanistic models with unknown or
unnormalized likelihoods. To circumvent this intractability,
we follow the neural method of Radev et al. (2020) and
Elsemüller et al. (2023) which enables amortized Bayesian
model comparison for arbitrary computational models (see
Fig. 3B for a graphical illustration). This method involves the
simultaneous training of two neural networks with different
roles: a summary network and an inference network. The
summary network learns maximally informative summary
statistics from the raw data (e.g., behavioral time series). The
inference network approximates the PMPs for the candidate
models, qφ(M | x1:T ) given the outputs of the summary net-
work. Here, we subsume all trainable network parameters
under φ and refer to the composition of the two networks as
an evidential network.

The training data for the evidential network consists of all
simulations from the candidate models together with the cor-
responding model index, D(M) = {x (b)

1:T ,M(b)
j }B′

b=1, where
B ′ denotes the total number of simulations from all models.
Together, the two networks minimize the standard cross-
entropy loss,

L(φ) = E(M j ,x1:T )∼D(M)

[
−

J∑
j=1

IM j log qφ(M j | x1:T )
]
, (16)

and we approximate the expectation over p(η, θ1:T , x1:T )

by our training set D(M), and IM j denotes an indicator
function (i.e., one-hot encoding) for the true model index. In
principle, we could use online learning for amortized model
comparison as well, but we found offline training to yield
sufficiently accurate results.

A key concern in amortized Bayesian model comparison
is whether the network outputs truly reflect the underlying
probabilities (Guo et al., 2017). Ideally, a posterior probabil-
ity estimate of 0.9 for a given model suggests that a decision
in favor of this model should be correct in 90% of cases.
However, if it is only correct in 80% of cases, the estimate
is overconfident. This discrepancy is quantified using the
Expected Calibration Error (ECE; Naeini et al., 2015), which
ranges from 0 (best) to 1 (worst). In practice, we estimate the
ECE by averaging the deviations between predicted and true
probabilities, calculated as relative frequencies within each
probability bin.
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Fig. 4 In silicomodel comparison and sensitivity results.ACalibration
curves of all four NSDDMs aggregated across the neural approximator
ensemble. Additionally, the expected calibration error (ÊCE) is anno-
tated within each subfigure. The gray histograms depict the relative

frequencies of the predicted model probabilities. B Confusion matrix
between true data generating model and predicted model. The propor-
tion values were averaged across the ten neural approximators within
the ensemble

More recently, Elsemüller et al. (2023) demonstrated the
importance of gauging the sensitivity of amortized neural
approximators, especially in the context of model compar-
ison. The authors suggest to train an ensemble of multiple
evidential networks, instead of relying on a single net-
work. Accordingly, we can measure the (lack of) agreement
between ensemble members and obtain a hint at the robust-
ness of the approximate PMPs. Here, we trained an ensemble
of ten evidential networks and computed the mean and stan-
dard deviation of the estimated PMPs across all ten networks.
For more details regarding the neural network architecture
and training settings, we refer the reader to the Supplemen-
tary Material.

Code Availability Complete code for reproducing the results
reported in this manuscript is available in the project’s
GitHub repository https://github.com/bayesflow-org/Non-
Stationary-DDM-Validation.

Results

Model Comparison

As a first step, we assess the closed-world (i.e., in silico)
performance of our model comparison method in terms of
computational faithfulness and accuracy of model recovery.
To assess the former, we perform simulation-based calibra-
tion (SBC; Talts et al., 2020; Säilynoja et al., 2022) based
on 10, 000 synthetic data sets each consisting of 800 trials
per model. Figure4A shows the calibration curves for each
NSDDM averaged across the ten evidential networks in our

deep ensemble. We observe excellent calibration with very
minimal expected calibration errors (ÊCE) across all models.
Thus, we conclude that the approximate posterior probabili-
ties are well-calibrated in the closed-world setting.

Next, we assess the accuracy of our model comparison
networks in terms of their ability to correctly identify the
ground-truth data-generating model. To this end, we apply
the deep ensemble to the 40, 000 synthetic data sets we
have already simulated for assessing calibration. In Fig. 4B,
we present the resulting confusion matrix, which illustrates
the agreement between true and predicted models averaged
across the ten approximators. Among the four models, the
random walk DDM is the only one that rarely gets confused
with the other models. A possible explanation is that it is the
only transitionmodel not capable of generating sudden shifts
in parameter values. The remaining models are susceptible
to more frequent misclassifications. For example, the mix-
ture random walk DDM is correctly identified only 54% of
the time, and it is often confused with the regime-switching
model, occurring 43% of the time. Notably, the Lévy flight
DDM is prone to mimicry with the random walk DDM (on
average 30% of the time).

It is essential to emphasize that these results do not imply
a deficiency in our model comparison method, but rather
underscore the fact that certain pairs of models, such as the
mixture random walk and the regime-switching DDM, can
generate remarkably similar data patterns. For instance, a
significant portion of the prior distribution’s mass for the α

parameter of the Lévy flight transition model centers around
2. If α ≈ 2, then the Lévy alpha-stable distribution closely
resembles aGaussian distribution,with equality in the case of
α = 2. Consequently, simulating the LévyflightDDMwould
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Fig. 5 Empirical model
comparison results. A
Distribution of posterior model
probabilities (PMP) from all
ensembles and 14 individual
participants. B Heatmap of
average log10 Bayes factors
(BF). Both metrics agree on
favoring the Lévy flight over the
other transition models

often yield data patterns that could have just as plausibly
originated from the simpler random walk DDM.

Similarly, a substantial portion of the prior mass for
the σ priors of the mixture random walk transition model
clusters around 0, which subsequently transforms it into a
regime-switching transition model, resulting in a large over-
lap in synthetic data sets. Interestingly, the mixture random
walk and the Lévy flight DDM are rarely confused, even
though both models can produce subtle local changes and
large sudden shifts. This implies that these two transition
models generate qualitatively similar but quantitatively easy-
to-distinguish parameter trajectories.

To better understand the similarities between the transi-
tionmodels, we conducted amodel misspecification analysis
focusing on the mixture random walk and regime-switching
models, as these two models exhibited the highest model
mimicry. We cross-fitted the models to 100 synthetic data
sets, each consisting of 800 trials. We then evaluated param-
eter recovery performance by computing the normalized root
mean squared error (NRMSE) between true and estimated
parameters for both the well-specified and misspecified sce-
narios.We found no notable difference in parameter recovery
between the two scenarios (see Fig. 9 in the Supplementary
Material).

In summary, the observation of occasional model confu-
sion is not a limitation of our method; rather, it underscores
our method’s effectiveness in discerning when two models
generate highly similar data, making them less straight-
forward to differentiate from each other. Moreover, the
amortization property of our method enables us to easily
conduct such simulation studies prior to analyzing real data—
estimating 40, 000 posterior model probabilities would have
been infeasible for any other method.

After successfully validating our model comparison met-
hod, we apply the deep ensemble to the empirical data of the
14 participants. Each approximator in the ensemble was used
to infer posterior model probabilities (PMP) for each model,
considering each individual’s data separately. Subsequently,

we displayed the distribution of the PMPs over all ensembles
and individuals (Fig. 5A). The analysis reveals that the Lévy
flight DDM is themost plausiblemodel with an average PMP
of approximately 60%. It was the most plausible model for
9 out of the 14 participants. In contrast, the mixture random
walk model collects an average PMP of less than 30%. Nev-
ertheless, it was estimated to be the most plausible model for
5 participants. The randomwalkDDMand regime-switching
DDM were consistently less plausible than the other models
and did not emerge as superior for any of the participants.

In addition to PMPs, we computed log10 Bayes factors
(BF). Figure5B depicts a heatmap of BFs for all one-to-one
comparisons between our four NSDDMs, averaged across
the participants and the evidential networks of the ensem-
ble. Following Kass & Raftery (1995), an absolute value of
log10(BF) > 2 indicates decisive evidence, absolute values
between 1 and 2 signify strong, and between 0.5 and 1 sub-
stantial evidence. An absolute value of log10(BF) < 0.5
is labeled as not worth more than a bare mention. The BF
patterns in Fig. 5B align with the PMP findings, implying
strong evidence for the Lévy flight DDM over the ran-
dom walk DDM and substantial evidence over the other
NSDDMs. Also, both the mixture random walk and the
regime-switching DDM have substantial evidence over the
random walk model. Interestingly, there is little evidence
favoring the mixture random walk DDM over the regime-
switching model, suggesting comparable performance.

These findings offer two substantive insights. First, the
ability of transition models to generate sudden shifts in
parameters seems essential, as seen in the random walk
DDM’s lower plausibility. Moreover, the regime-switching
DDM, allowing for occasional shifts, but neglecting small
gradual changes, performed less effectively than the more
complex models. This result underscores the importance of
accommodating both gradual as well as sharp changes in
model parameters for achieving optimal fit. Consequently,
the more complex NSDDMs, particularly the mixture ran-
dom walk DDM and Lévy flight DDM, emerged as more
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Fig. 6 Aggregated results from all models fitted to the empirical data.
The top row illustrates posterior re-simulations as a measure of the
model’s generative performance and absolute goodness-of-fit to the
data. The bottom rowdepicts parameter estimates of the drift rate and the
threshold parameter from the non-stationary diffusion decision models
(NSDDM). A Empirical and re-simulated RTs for each difficulty level
and both conditions. B Empirical and re-simulated proportions of cor-

rect choices (accuracy) for each difficulty level and both conditions
separately. C Posterior estimates of the drift rate parameter for each
difficulty level and both conditions separately. D Posterior estimates of
the threshold parameter for each difficulty level and both conditions sep-
arately. Points indicate medians and the error bars represent the median
absolute deviations (MAD) across individuals and re-simulations

plausible than their simpler counterparts despite the implicit
penalty for prior complexity imposed by Bayesian model
comparison.

Posterior Re-simulation

Subsequently, we fit all four variants of the NSDDM to
each of the 14 data sets, evaluating the absolute goodness-
of-fit of each model. To achieve this, we conducted 500
re-simulations with randomly sampled posterior parame-
ter trajectories for each individual data set. In Fig. 6A, we
present the median and median absolute deviation (MAD) of
response times (RT) across all individuals and re-simulations.
We provide these aggregates for each NSDDM, categorized
by task difficulty level and the two experimental conditions.
Notably, an initial observation reveals that the experimental
manipulations were effective on average: empirical median
RTs increased with task difficulty, and individuals tended to
respond faster in the speed condition compared to the accu-
racy condition. Remarkably, all four variants of the NSDDM
demonstrated an outstanding fit to these empirical data pat-
terns. Solely, RTs in the accuracy condition with the highest
task difficult level consistently are underestimated by all
NSDDM variants.

The empirical and re-simulated proportion of correct
choices (accuracy) are aggregated and presented in the same
way as the RTs (see Fig. 6B). Again, the empirical data
align with the anticipated patterns resulting from our exper-
imental manipulations. As expected, accuracy diminishes
with increasing task difficulty. Individuals are generally less
accurate in the speed condition compared to the accuracy
condition. Although NSDDMs successfully reproduce the
general patterns in the choice data, we observe notably worse
re-simulation compared to that of the RT data. In both accu-
racy and speed conditions, re-simulated accuracies exhibit
a less pronounced decline as a function of difficulty than
observed in the empirical data. Further, the difference in
accuracy between the two experimental conditions is less
pronounced in the re-simulated data compared to the behav-
ioral data. Notably, the random walk DDM underperforms
relative to the other three NSDDMs in this analysis.

It is important to highlight that, unlike conventional
approaches, the models did not receive any information
regarding the specific experimental context an individual
faced at any given moment. From these analyses, we con-
clude that all NSDDM implementations successfully capture
the general patterns in the empirical RT data. Individual par-
ticipant analyses, detailed in the Supplementary Material,
affirm the same conclusions.
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Fig. 7 Model fit to response time (RT) time series. The empirical RT
time series of two exemplar individuals are shown in black. From trial
1 to 700, the posterior re-simulations (aka retrodictive checks) using
the best-fitting non-stationary diffusion decision model (NSDDM) for
the specific individual are shown in blue and red, respectively. In this
instance, the left column showcases results from a Lévy flight DDM,
while the right column displays parameter trajectories from a mixture
random walk DDM. For the remaining trials, one-step-ahead posterior

predictions from the NSDDMs are depicted in cyan and orange, respec-
tively. Solid lines correspond to the median and shaded bands to 90%
credibility intervals (CI). The empirical, re-simulated, and predicted RT
time series were smoothed via a simple moving average (SMA) with a
period of 5. The yellow shaded regions indicate trials where speed was
emphasized over accuracy, while blank white areas denote instances
where the opposite emphasis was applied

In addition to analyzing the absolute model fit at the
aggregate level, we evaluated the fit across the RT time
series. For each participant, we generated 250 posterior
re-simulations for the first 700 trials using the correspond-
ing best-fitting NSDDM. The remaining 68 data points
were reserved for predictive analysis. For this analysis, we
employed a one-step-ahead prediction approach, where we
iteratively forecasted the subsequent data point starting at
time step 700, followed by re-fitting the model for each of
the remaining steps.

Figure 7 illustrates the empirical and re-simulated RT
time series for two exemplary participants. Results for the
remaining 12 participants can be seen in the Supplementary
Material. The colored lines depict themedian, and the shaded
bands represent 90% credibility intervals (CI) across the 250
re-simulations. Both the empirical data (solid black lines)
and the re-simulated/predicted RTs were smoothed using a
simple moving average (SMA) with a period of 5. Yellow
shaded regions highlight trials where speed was emphasized
over accuracy, whereas blank white areas denote instances
where the opposite emphasis was applied. Overall, RTs were
slower and more variable in the accuracy condition. Notably,
the NSDDM not only closely replicated the empirical time
series but also effectively predicted future data points. This
suggests that the model does not overfit the data.

Parameter Estimates

At the heart of the current validation study are the inferred
parameters, prompting a crucial question:Do these parameter

dynamics align with the sequence of experimental manip-
ulations? We address this question by examining both the
time-averaged and time-varying estimates.

Aggregate Analysis We initially examine the parameter esti-
mates averaged across individuals for each difficulty level
and condition separately. This provides a comprehensive
overview of average effects on model parameters in differ-
ent experimental contexts, at first, without delving into the
temporal aspect. The bottom panel of Fig. 6 illustrates the
posterior medians and MADs collapsed onto the different
experimental contexts for the drift rate (Fig. 6C) and thresh-
old parameter (Fig. 6D).

Analyzing the aggregated drift rate estimates reveals an
anticipated pattern. On average, the drift rate decreases as
task difficulty increases, observed in both the accuracy and
speed conditions. Additionally, slightly higher overall val-
ues are estimated in the speed condition compared to the
accuracy condition.While all fourNSDDMsyield fairly sim-
ilar parameter values, the distinctions in average parameter
values between difficulty levels are less pronounced when
estimated with the random walk DDM.

With the second experimental manipulation—namely,
the instruction to emphasize speed or accuracy—we aimed
to manipulate the participants’ decision caution, which is
assumed to be captured by the threshold parameter. Exam-
ining the aggregated estimates of the threshold parameter
in Fig. 6D, we observe generally increased values in the
accuracy condition compared to the speed condition. Inter-
estingly, in the accuracy condition, the threshold parameter
also slightly increaseswith growing task difficulty—apattern
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Fig. 8 Estimated parameter trajectories of two exemplar individuals
corresponding to the respective best-fitting non-stationary diffusion
decision model (NSDDM). In this instance, the left column showcases
results from a Lévy flight DDM,while the right column displays param-
eter trajectories from a mixture random walk DDM. Each low-level
parameter (drift rate, threshold, and non-decision time) is displayed
on a separate row. The solid lines are color-coded (blue for the Lévy

flight DDM and red for the mixture random walk DDM) to represent
the posterior medians, while the shaded regions mark the median abso-
lute deviation (MAD). The yellow shaded regions indicate trials where
speed was emphasized over accuracy, while blank white areas denote
instances where the opposite emphasis was applied. The sequences of
task difficulty levels are depicted with black lines and overlaid with the
drift rate in the top panels

not observed in the speed condition. A comparison between
the estimates of the four NSDDMs reveals that the mixture
random walk DDM and the Lévy flight DDM yield higher
threshold estimates in the accuracy condition compared to the
other two NSDDMs. Conversely, all four NSDDMs seem to
converge in their threshold parameter estimates in the speed
condition.

Parameter Trajectories For a more fine-grained analysis,
particularly considering temporal aspects, we present the
complete inferred parameter trajectories of the three low-
level parameters of a NSDDM for two exemplary individuals
in Fig. 8. The Supplementary Material contains the inferred
parameter trajectories of the remaining 12 participants. Each
participant’s trajectory is depicted with the posterior median
(solid lines) and the median absolute deviation (MAD,
shaded bands) across all 768 experimental trials, estimated
with the model with the highest posterior model probability
for that specific individual. The trajectory of participant 11
corresponds to a Lévy flight DDM, whereas the trajectory

of participant 6 comes from a mixture random walk DDM.
Shaded blocks along the timeline denote the experimental
condition at a given trial, with yellow indicating an emphasis
on speed.

The top panel illustrates the estimated trajectories of the
drift rate parameter alongside the sequences of task diffi-
culty levels (depicted by a black line). Here, 0 corresponds
to the most difficult level, while 6 represents the easiest. It
is important to note that the absolute values of the difficulty
conditions hold no intrinsic meaning. As observed, the drift
rates of both participants align with the overarching trend of
the difficulty condition sequence. They decrease when the
difficulty is high and increase as the task becomes easier.

Regarding the trajectory of the threshold parameter (mid-
dle panel), we anticipated that a shift from an accuracy
instruction to a speed instruction would lead to a decrease
in the threshold parameter, and vice versa. This hypothe-
sized pattern is clearly evident when examining the estimated
threshold parameter trajectories of the two participants in the
middle panel of Fig. 8. For instance, the threshold parameter
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estimated for participant 11 oscillates around an approximate
value of 1 in the speed condition. Moreover, it consistently
riseswhenever a switch in the accuracy condition takes place.
Intriguingly, the parameter’s value during accuracy empha-
sis is not as uniform compared to the speed condition. In
some blocks, it fluctuates around 2, while in others, it hovers
around 1.5 or even lower. Similarly, participant 6 displays
pronounced shifts in the threshold parameter when a change
in the condition occurs, with these shifts being more pro-
nounced in the first half of the experiment and diminishing
in the second half.

Finally, the bottom panel of Fig. 8 illustrates the trajectory
of the non-decision time parameter.Although our experimen-
tal manipulations did not systematically target the dynamics
of this parameter, it is sometimes assumed that the manipula-
tion of speed and accuracy instructions may also influence it
(Voss et al., 2004; Arnold et al., 2015). While both individu-
als exhibit some fluctuations in τ , no systematic differences
between the two conditions are apparent.

Upon reviewing the parameter trajectories of the remain-
ing participants in the Supplementary Material, similar
patterns emerge. In summary, both the inferredmeans and tra-
jectories of the drift rate and threshold parameters align with
the sequence of experimental manipulations, as predicted by
our design. Moreover, our NSDDMs were able to estimate
these trajectories directly from the behavioral data, getting
no explicit information whatsoever about the experimental
context. Thus, our validation study suggests that NSDDMs
can detect genuine changes in cognitive constructs.

Discussion

Psychology and cognitive science are witnessing a growing
interest in incorporating dynamic aspects into mechanistic
models that seek to formalize and explain cognitive pro-
cesses. In a previous study, we explored a method to estimate
plausible trajectories of cognitive process model parameters
directly frombehavioral data (Schumacher et al., 2023).Nev-
ertheless, an empirical validation of this modeling approach
was lacking. Thus, the current study sought to bridge this
gap by experimentally examining the validity of the inferred
diffusion decision model (DDM) parameter dynamics.

Experimental Validation

The present study posed the following core question: Can
non-stationary DDMs (NSDDM) effectively detect exper-
imentally induced changes in cognitive constructs from
behavioral data alone? If so, our findings can provide the
first substantial evidence for the validity of the superstatis-

tics framework as applied to cognitive models. Notably,
our results demonstrated that the NSDDMs indeed reliably
identified the sequence of two experimental manipulations
despite the absence of any contextual information.Moreover,
posterior re-simulation revealed a good fit to the general data
pattern, both on an aggregate level and on the level of the raw
time series. This performance stands as compelling evidence
supporting the validity of NSDDMs.

Nevertheless, we observed some misfits in accuracy in
the most difficult condition regardless of the emphasis on
speed or accuracy. Identifying the exact reasons for these
discrepancies is challenging, but several factors may have
contributed to the difficulty in achieving an accurate fit.
First and foremost, our models did not receive information
about the condition of the current trial. We aimed to vali-
datewhether the inferred parameter trajectories could capture
changes in conditions, but this made it significantly harder to
fit specific data patterns accurately. Additionally, some prior
assumptions might have made it unlikely to fit the behavior
in the most difficult condition accurately. Furthermore, we
did not perform any pretreatment of the data, such as exclud-
ing trials with very short or long response times. The goal
of this study was to experimentally validate the parameter
trajectories, not to achieve perfect data fitting. Therefore, we
did not conduct a detailed analysis to improve our modeling
decisions to address these misfits.

Despite these challenges, the inferred parameter trajecto-
ries provided valuable insights into how themodel responded
to varying task conditions. The trajectory of the drift rate
parameter for all individuals closely mirrored the sequence
of the task difficulty manipulation. Specifically, the drift rate
parameter decreased when task difficulty increased, and con-
versely, increased as task difficulty decreased. This not only
confirms the anticipated impact of the manipulation but also
highlights the NSDDMs’ ability to discern these variations
directly from the behavioral data, agnostic to additional con-
textual information.

Interestingly, drift rates increased throughout the exper-
iment, although this was not the case for trials with the
highest task difficulty. This observation suggests a practice
effect among participants, where task performance generally
improvedwith experience, except under themost challenging
condition. Practice effects are a widely recognized phe-
nomenon in various decision-making andmemoryparadigms
(Healey & Kahana, 2014, 2016; Forstmann et al., 2008;
Wagenmakers et al., 2008;Wynton&Anglim, 2017). In fact,
practice effects have been studied with various dynamic cog-
nitive modeling approaches (Kahana et al., 2018; Gunawan
et al., 2022; Evans & Hawkins, 2019; Evans et al., 2018).
A notable contribution to this field comes from (Gunawan
et al., 2022), who conducted a comprehensive re-analysis
of three datasets derived from widely cited articles. Their
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study compared three dynamic models: (i) a smooth polyno-
mial trend, (ii) a non-smooth autoregressive process, and (iii)
a regime-switching model instantiated by a hidden Markov
model (HMM) with two different states.

In their study, Gunawan et al. (2022) employed a low-
level model similar to the DDM, namely the linear ballistic
accumulator model (LBA; Brown&Heathcote, 2008). How-
ever, their transition models, specifically the polynomial
trend and the autoregressive process, differed in that they
allowed LBA parameters to change only from block to block,
neglecting trial-to-trial parameter fluctuations (except for
the HMM). Their findings indicated that the HMM outper-
formed the other two dynamic model instantiations. This
superiority can possibly be attributed to the model’s capac-
ity to flexibly capture parameter changes from trial to trial,
in contrast to changes occurring only from block to block.
Even though the trial-by-trial specification of the HMM cap-
tures the microstructure of the decision-making process, it
is still less flexible than the models we examined in the cur-
rent study. HMMs assume a pre-defined number of possible
states, whereas this is not the case with the implementation
of our regime-switching model. The advantage of not fix-
ing the number of distinct states beforehand is particularly
evident when the exact latent quantity is unknown prior to
investigation. Moreover, results from our model compari-
son clearly favored transition models that account for both,
gradual changes as well as sudden shifts. This suggests that
regime-switching models may fall short in certain fields of
application. Nevertheless, both models have their merits, and
the choice between them should be guided by the specific
research question at hand and formal model comparison.

As our study focused on experimentally validating param-
eter trajectories estimated with NSDDMs, we deliberately
refrained from further analyzing practice effects. However,
we suggest that our flexible framework could be a promis-
ing alternative for investigating practice effects. Unlike
pure regime-switching models, it can reveal a mixture of
practice-related changes, ranging from abrupt shifts to grad-
ual changes. When exploring substantive research questions,
such as practice effects, with superstatistical models, it is
imperative to depart from the approach taken in the cur-
rent study. That is, one should always incorporate contextual
information from the experimental setting when estimat-
ing parameter trajectories. Here, the question arises, how to
incorporate this information? In a previous study, we simply
assumed separate low-level parameters for each experimental
condition (Schumacher et al., 2023). This approach is partic-
ularly appropriate when conditions randomly change from
trial to trial. However, future research could explore alter-
native ways of including experimental context information
with the goal of further informing the parameters.

Concerning the second experimental manipulation, that is,
the emphasis on speed or accuracy, their effect on the threshold

parameter is more diverse across individuals. While a major-
ity of participants demonstrated shifts in the threshold param-
eter in response to instructional changes, the consistency
and magnitude of these changes varied significantly among
individuals. Some participants exhibited only a few adjust-
ments in the threshold parameters, seemingly overlooking the
change in instruction on certain occasions. In contrast, oth-
ers consistently heightened their threshold parameter during
accuracy-focused tasks, followed by a subsequent decrease
when transitioning to speed-oriented conditions.Meanwhile,
some participants displayed rather unsystematic changes in
decision caution, suggesting that these participants reacted
differently to the speed-accuracy manipulation.

Kucharský et al. (2021) introduced a dynamic LBA incor-
porating a hidden Markov transition model with two states,
akin to the model proposed by Gunawan et al. (2022). Their
focus centered on scrutinizing the speed-accuracy trade-off,
exploring the hypothesis that individuals dynamically switch
between different operating states under varying instruction
conditions. By fitting their model to previously collected
data, they provided evidence that individuals tend to oscil-
late between two stable states: a deliberative, stimulus-driven
mode emphasizing accuracy and sacrificing speed and a
guessing mode characterized by random and relatively faster
choices.

However, our approach for estimating parameter trajec-
tories reveals a more intricate scenario, challenging the
assumed binary operational shift. Contrary to expectations,
individuals manifest more than two discernible states. At
times, they exhibit an extreme adaptation to a change in con-
dition, while at other times, they display little or no reaction
to the altered condition. This complexity underscores the
necessity for more flexible transition models, as employed
in our study. Failing to utilize such adaptive models could
potentially obscure the complex unfolding of individuals’
cognition and behavior over time.

Model Comparison

When implementing non-stationarymodels, a modeler encoun-
ters a myriad of options, ranging from various transition
models to decisions about which parameter follows which
transition model. In this study, we limited our choices
to a small subset of the possibility space. Based on our
experimental manipulations, we anticipated that the DDM
parameters, particularly the threshold parameter, would not
only undergo gradual changes but also more abrupt shifts
in response to changing conditions. Consequently, we tested
different implementations accommodating such shifts (mix-
ture random walk, Lévy flight, regime-switching) against a
transition model that does not, namely, the simple Gaussian
random walk.
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The inferred posterior model probabilities (PMPs) and
Bayes factors (BFs) consistently favored the Lévy flight and,
occasionally, the mixture random walk transition models.
However, in terms of the absolute goodness-of-fit, as assessed
through posterior re-simulations, the performance of all four
NSDDMs showed remarkable similarity. This leads to two
notable conclusions. First, even the models with lower PMPs
demonstrated a good fit to the data, likely owing to the inher-
ent flexibility of the superstatistical framework. Second, our
Bayesianmodel comparisonmethod could reliably detect the
most favorable model even when the absolute differences
were marginal.

Comparison to Time-Variant Models

Throughout this article, we have focused exclusively on the
DDM as a specific example within the broader class of evi-
dence accumulation models. The DDM assumes that certain
parameters, such as the threshold parameter, remain constant
during a single trial, but we allowed them to vary across dif-
ferent trials.

The literature has introduced models like the collapsing
bounds DDM (Bowman et al., 2012; Shadlen and Kiani,
2013) and the urgency-gatingmodel (Ditterich, 2006), which
allow for time-variance within a trial. The collapsing bounds
DDM posits that the threshold decreases throughout the
decision-making process, while the urgency-gating model
incorporates both the leaky integration of evidence samples
and an “urgency signal” that prevents excessive delays in
decision-making.

These models have been developed primarily to explain
specific empirical data patterns, such as slow errors, without
relying on the assumption of random trial-to-trial variability
in the core parameters of the DDM (but see Hawkins et al.,
2015). This raises the question ofwhether thesemodels could
offer a simpler explanation than our NSDDMs.

While the collapsing boundsDDMand the urgency-gating
model can account for certain data patterns without assuming
trial-to-trial variability, they cannot identify or explain system-
atic changes in the underlying constructs caused by factors
such as learning, fatigue, motivation, or sudden insights.
Uncovering such changes is precisely the goal of NSDDMs.

Nonetheless, the collapsingboundsDDMand theurgency-
gating model could be valuable to explore within a supersta-
tistical framework. It has been suggested that these models
may provide more plausible explanations for tasks in which
stimuli or conditions are dynamic within a single trial (Pale-
stro et al., 2018; Evans et al., 2017). With the superstatistical
framework, it would be straightforward to implement the
collapsing bounds DDM and the urgency-gating model,
resulting in models that allow for within-trial dynamics but

also aim to uncover systematic changes over the course of an
experiment.

Limitations

Psychological research is usually interested in group or
overall estimate of parameters. Thus, it would have been
informative to compute and inspect “average” parameter tra-
jectories. Unfortunately, our experiment was designed in
a way that the difficulty and the speed-accuracy instruc-
tion manipulation were randomized across participants. This
made it impossible to average the individual trajectories
directly. Instead, we collapsed the estimates by the differ-
ent experimental conditions and provided an aggregate view
across individuals. Although this is certainly a limitation of
this study, we argue that the current analysis is sufficient to
address our specific research question.

Moreover, despite using many default settings from the
BayesFlow software (Radev et al., 2023), the configura-
tion and training of neural approximators for both parameter
inference and model comparison for non-stationary mod-
els can still be a challenge. A basic understanding of deep
learning principles and simulation-based inference is an
essential prerequisite. These requirements may pose obsta-
cles to the adoption of our method, highlighting the necessity
for improved software and tutorials addressing these intrica-
cies.

Outlook

Going forward, our superstatistics framework offers numer-
ous opportunities for future research. It could become a
powerful tool in the methodological toolkit of researchers
interested in temporal changes in cognitive constructs. As
a general framework, it provides significant flexibility to
uncover potential parameter dynamics in a data-driven man-
ner. While we have focused on a specific model describing
the evidence accumulation process during speeded binary
decision-making, many other cognitive processmodels stand
to benefit from such an approach. For instance, parameters
in reinforcement learning models, such as the learning rate
or the softmax temperature parameter, are likely to change
over time (Li et al., 2023; Ger et al., 2024).

Furthermore, even when the temporal evolution of cog-
nitive parameters is not the central research question,
employing non-stationary models can offer advantages over
stationary models (Schumacher et al., 2023). Our analysis of
estimated trajectories demonstrates clear changes in param-
eters, highlighting how assuming stationarity could result
in misleading conclusions. Exploring these dynamics more
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deeply could provide valuable insights and drive advance-
ments in various areas of cognitive science. For instance,
researchers could attempt to link non-stationary parameter
trajectories to additional neurophysiological time series data,
such as EEG or eye movements. This approach could be
beneficial in twoways: incorporating additional data as a con-
straint might improve the precision of cognitive parameter
trajectory estimates, and it could enhance our understand-
ing of the relationship between brain activity and specific
cognitive constructs.

With great flexibility comes a plethora of choices. In this
study, we compared different transition models guided by
the contrast between gradual and sudden changes. However,
there aremore degrees of freedomwhen implementing super-
statistical models, or Bayesian models in general (Gelman
et al., 2020). Elsemüller et al. (2023) advocate for the crucial
role of sensitivity analysis, illustrating a potent methodology
to facilitate informed decisions regarding factors such as the
type and shape of prior distributions, neural network archi-
tectures, and other pivotal elements. We believe that using
such an approach in the context of superstatistics could pro-
vide better guidelines for their implementation.

Up to this point, we focused on the estimates of the low-
level parameter trajectories. Yet, it is crucial to note that
we also obtain posterior distributions for the static high-
level parameters. These estimates can also yield valuable
insights into individuals’ behavior and cognition. Depend-
ing on the chosen transition model, these estimates can offer
indications of the frequencywithwhich individuals transition
between distinct operational states or the variability inherent
in their cognitive constructs. Thus, analyzing these high-level
parameters could constitute a compelling avenue for future
research.

Conclusion

In conclusion, the experimental validation of non-stationary
diffusion decision models presented in this study represents
a significant step forward in the field of cognitive modeling.
Our results provide compelling evidence that the estimated
parameter trajectories genuinely reflect tangible changes in
the targeted psychological constructs. We hope that our
validation opens the door to widespread applications of non-
stationary models in future modeling endeavors, offering a
more nuanced understanding of cognitive processes across
varying time scales.
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