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Abstract
Bayesian t tests have become increasingly popular alternatives to null-hypothesis significance testing
(NHST) in psychological research. In contrast to NHST, they allow for the quantification of evidence in
favor of the null hypothesis and for optional stopping. Amajor drawback of Bayesian t tests, however, is that
error probabilities of statistical decisions remain uncontrolled. Previous approaches in the literature to rem-
edy this problem require time-consuming simulations to calibrate decision thresholds. In this article, we pro-
pose a sequential probability ratio test that combines Bayesian t tests with simple decision criteria developed
by AbrahamWald in 1947.We discuss this sequential procedure, which we callWaldian t test, in the context
of three recently proposed specifications of Bayesian t tests. Waldian t tests preserve the key idea of
Bayesian t tests by assuming a distribution for the effect size under the alternative hypothesis. At the same
time, they control expected frequentist error probabilities, with the nominal Type I and Type II error proba-
bilities serving as upper bounds to the actual expected error rates under the specified statistical models. Thus,
Waldian t tests are fully justified from both a Bayesian and a frequentist point of view.We highlight the rela-
tionship between Bayesian and frequentist error probabilities and critically discuss the implications of con-
ventional stopping criteria for sequential Bayesian t tests. Finally, we provide a user-friendly web
application that implements the proposed procedure for interested researchers.

Translational Abstract
Bayesian t tests have become increasingly popular in psychological research. In contrast to classical test pro-
cedures, Bayesian tests can measure statistical evidence in favor of the null hypothesis and allow for optional
stopping. Yet, probabilities of statistical decision errors (i.e., falsely rejecting a hypothesis when it is true)
are not explicitly controlled. In this article, we propose a sequential test procedure where Bayesian t tests are
calculated repeatedly after each additional observation. The sample size is increased until the test exceeds a
predefined threshold.We call the proposed procedureWaldian t test because it is a straightforward combina-
tion of Bayesian t tests with AbrahamWald’s sequential probability ratio test. We illustrate the procedure in
the context of three different types of default and informed Bayesian t tests, and show how it satisfies both
frequentist (i.e., controlling error probabilities) and Bayesian (i.e., measuring statistical evidence) desiderata.
We also highlight the relationship between frequentist and Bayesian error probabilities and critically discuss
the implications of conventional stopping criteria for sequential Bayesian t tests. Finally, we provide a user-
friendly web application that implementsWaldian t tests for interested researchers.

Keywords: Bayesian t tests, Bayes factors, statistical error probabilities, sequential tests, sequential prob-
ability ratio test

A key component of empirical science is the critical evaluation
of hypotheses in light of data. Whereas there is little controversy
about this statement, the particular means by which hypotheses
should be tested has been the subject of many heated debates. Null-
hypothesis significance testing (NHST), the dominant procedure in

psychology, has been harshly criticized for decades (e.g., Bakan,
1966; Bredenkamp, 1972; Cohen, 1994; Gelman, 2016; Gigerenzer,
1993, 2004; Rozeboom, 1960; Wagenmakers, 2007). Some of these
criticisms aim at misinterpretations and misuse of p-value based
procedures. In response, there have been suggestions to improve
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their application by stressing the importance of considering effect
sizes and power analysis within the Neyman-Pearson framework
(Cohen, 1962, 1994; Erdfelder et al., 1996) and of correctly inter-
preting p values (Lakens, 2021). Other critics, in contrast, have
called into question the adequacy of p values and frequentist meth-
ods for hypothesis testing in general. Consequently, there have
been several calls to abandon frequentist hypothesis testing com-
pletely for supposedly superior alternative statistical methods (e.g.,
Amrhein et al., 2019; Cumming, 2014; Wagenmakers, 2007).
One alternative that has gained notable attention is Bayesian hy-

pothesis testing. In a particularly influential publication in the field
of psychology, Rouder et al. (2009) proposed using Bayesian t
tests instead of conventional frequentist t tests. Bayesian t tests
focus on the relative evidence in the data for one statistical hypoth-
esis, typically referred to as null hypothesis (H0) vis-à-vis another,
termed alternative hypothesis (H1). The strength of this evidence
is quantified by the Bayes factor. As the multiplicative factor for
transforming prior beliefs for competing hypotheses to posterior
beliefs, it plays a central role in Bayesian hypothesis testing and
model comparison (Berger, 2006; Kass & Raftery, 1995). In recent
years, the number of applications of Bayesian hypothesis tests in
psychological research has been steadily increasing, reflecting
their growing importance in the field (Heck et al., in press; Ten-
deiro & Kiers, 2019).

Advantages and Limitations of Bayesian Hypothesis
Tests

Advocates of Bayesian methods have repeatedly promoted cer-
tain properties of Bayes factors as advantageous compared to
NHST. For example, as is well known, the p value does not allow
analysts to state evidence in favor of the null hypothesis (Gallistel,
2009). Thus, in NHST, we might choose to reject the null but we
can never accept it. The Bayes factor, in contrast, can indicate evi-
dence for or against the null, as well as the absence of evidence
(Kass & Raftery, 1995; Rouder et al., 2009; Wagenmakers, 2007).
Another limitation of conventional NHST is that optional stop-

ping, that is, adaptively increasing the sample size and stopping
depending on the data at hand, is inadmissible. If multiple tests are
conducted during sampling while stopping only when p , a
(where a denotes the predefined Type I error probability) and
increasing the sample otherwise, the probability of the p value fall-
ing below a at some point approaches one—even when the null
hypothesis is true (Armitage et al., 1969). Thus, optional stopping
without correction in NHST constitutes a questionable research
practice that seriously inflates Type I error rates (John et al., 2012;
Simmons et al., 2011). Bayes factors, in contrast, can be computed
repeatedly during the sampling process without altering their inter-
pretation as measures of relative statistical evidence (Edwards et
al., 1963; Hendriksen et al., 2020; Lindley, 1957; Rouder, 2014).
Optional stopping is thus not a problem in Bayesian t tests (but see
de Heide & Grünwald, 2021). In fact, sequential Bayes factors
have been proposed repeatedly as a means to increase efficiency in
hypothesis testing (Rouder, 2014; Schönbrodt et al., 2017; Stefan
et al., 2022; Wagenmakers et al., 2012).
Despite their attractive properties, Bayesian t tests also have

limitations. The Bayes factor is a continuous evidence measure
that indicates how researchers should update their subjective
beliefs in competing statistical models or hypotheses. There are

currently no normative, theoretically derived thresholds for the
Bayes factor that, if exceeded, mandate a decision to reject or
accept a hypothesis with controlled error probabilities. Although
threshold values for Bayes factors can in principle be calibrated to
have the desired error probabilities under the specified statistical
models, this calibration may not be straightforward except for
atypical applications where both H0 and H1 correspond to simple
point hypotheses (see Frequentist Error Probabilities in Bayesian t
Tests section). In typical applications with more complex specifi-
cations of H1, error probability control for Bayes factors will
involve sophisticated calculations and potentially time-consuming
simulations (Schönbrodt et al., 2017; Stefan et al., 2022).

In response to the difficulties of error probability control in
Bayesian t tests, it has frequently been argued that communicating
relative evidence and posterior probabilities (or odds) directly
instead of making dichotomous acceptance/rejection decisions
truly reflects the aim of statistical inference in science, that is,
what we as researchers actually want to know (e.g., Bakan, 1966;
Bayarri et al., 2016; Edwards et al., 1963; Morey et al., 2016;
Rozeboom, 1960). However, in contrast to this view, Lakens
(2021) argues that it is at least debatable if there really is only one
type of inference that all researchers are truly interested in all of
the time. In some situations, researchers might indeed be interested
in stating the evidence provided by the data or expressing their
belief in competing hypotheses after seeing the data. Other con-
texts, however, compel researchers to decide to act in a certain
way, be it by implementing a vaccine for a pandemic disease, by
continuing or abandoning a line of research based on the outcome
of a pilot study, or simply by making a claim that a hypothesis
does or does not hold (Lakens, 2021). In such situations, it is piv-
otal that the procedure used to arrive at these decisions “in the
long run of experience . . . not be too often wrong” (Neyman,
1933, p. 291). Thus, knowing (and controlling) the properties of a
Bayesian t test procedure in terms of how often it results in an er-
roneous decision in the long rung is highly relevant (Jeon & De
Boeck, 2017; Sanborn et al., 2014; Sanborn & Hills, 2014; see
also Gelman & Shalizi, 2013). In fact, error probability control in
this sense, often referred to as the Neyman-Pearson formulation, is
not only important when using Bayesian t tests as a statistical deci-
sion-making tool but also from the perspective of statistical infer-
ence as severe testing of scientific hypotheses or models (Lakatos,
1978; Mayo, 2018; Mayo & Spanos, 2006; Westermann & Hager,
1986).

Aim of This Article

In this article, we discuss a simple extension of Bayesian t tests
as a remedy of the aforementioned limitation: We promote a com-
bination of Bayesian t tests with a particular class of frequentist
tests, namely, sequential probability ratio tests (SPRTs; Wald,
1947). In SPRTs, hypotheses are tested repeatedly after each ob-
servation by calculating a likelihood ratio while increasing the
sample size until a predefined threshold is reached. SPRTs for
common t test scenarios have been developed by Rushton (1950,
1952) and Hajnal (1961). Recent simulation studies have demon-
strated that they efficiently control the error probabilities of statis-
tical decisions (Schnuerch & Erdfelder, 2020). Importantly, the
likelihood ratio underlying these sequential t tests is closely related
to the Bayes factor in Bayesian t tests (Stefan et al., 2022).
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Building on this relationship, we show that Rushton’s and Hajnal’s
sequential t tests can be generalized beyond the case of point
hypotheses to a more general class of alternative hypotheses as
represented by prior distributions. Consequently, we can use the
general logic of the SPRT to derive decision thresholds for se-
quential Bayes factors such that resulting error probabilities can be
controlled explicitly.
We show how this combination of Bayesian t tests and SPRTs

unifies the advantages of the Bayes factor (quantifying statistical
evidence) with those of the frequentist test procedure (controlling
long-run error rates). To acknowledge Abraham Wald as the origi-
nator of the underlying statistical ideas, we call this combination
of Bayesian and frequentist inference concepts Waldian t test. The
proposed procedure draws on previous theoretical advancements
in the literature (Berger et al., 1999; Hajnal, 1961; Hendriksen et
al., 2020; Wald, 1947) that we apply to three Bayesian t test speci-
fications: The default t test discussed by Rouder et al. (2009), the
informed t test introduced by Gronau et al. (2020), and a recently
proposed default t test based on so-called nonlocal alternative pri-
ors by Pramanik and Johnson (in press).
The remainder of this article is structured as follows: First, we

discuss Bayesian t tests and what proper error control in the Ney-
man-Pearson sense means in this context. We then show how Wal-
dian t tests can achieve this error control. Subsequently, we assess
the properties of Waldian t tests in a series of simulations. We also
show how to calculate approximate error probabilities of sequen-
tial Bayes factor procedures employing conventional Bayes factor
thresholds. This is done analytically and thus does not require
time-intensive simulations. Finally, we provide an easy-to-use
software tool which implements the proposed Waldian t tests such
that psychologists can readily apply them in their own research
(https://martinschnuerch.shinyapps.io/Waldian-t-Tests/).

Bayesian t Tests

Inference in Bayesian t tests is based on the Bayes factor, a quan-
tity typically attributed to the works of Sir Harold Jeffreys and
Dorothy Wrinch (Wrinch & Jeffreys, 1921). The Bayes factor is the
multiplicative factor by which the relative beliefs about two com-
peting hypotheses before seeing the data (i.e., the prior odds) are
updated in order to arrive at the relative beliefs after seeing the data
(i.e., the posterior odds; Jeffreys, 1961; Kass & Raftery, 1995):

PðH1 j dataÞ
PðH0 j dataÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Posterior odds

¼ pðdata jH1Þ
pðdata jH0Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Bayes factor

� PðH1Þ
PðH0Þ|fflfflffl{zfflfflffl}
Prior odds

: (1)

The term pðdata j HhÞ denotes the marginal likelihood, subse-
quently denoted mh(data), which is the weighted average probabil-
ity (density) of the observed data under hypothesis h (Rouder et
al., 2009). The above formula follows directly from Bayes’ rule. It
illustrates that the factor by which subjective beliefs should ration-
ally be updated—that is, the extent to which the data should
inform what we believe or know—is in fact the relative accuracy
of the two hypotheses in predicting the observed data (Rouder &
Morey, 2019).
In this article, we focus on the arguably most common scenario

in statistical inference, namely, the test of mean differences

between two independent samples with common but unknown
standard deviation r. Let xi and yj denote observations from each
group, with i = 1, . . . , nx and j = 1, . . . , ny, modeled as

Xi � Normal lþ dr
2

;r2

� �
;

Yj � Normal l� dr
2

;r2

� �
:

(2)

In this notation, the unknown grand mean l and population
standard deviation r are so-called nuisance parameters while d
denotes the test-relevant parameter of primary interest, namely,
the standardized population effect size (i.e., Cohen’s d; Cohen,
1988). The hypotheses can thus be expressed in terms of d. In the
classical setting that also underlies conventional NHST t tests, the
null hypothesis posits that there is no difference between the two
population means, that is, the effect is absent, H0: d ¼ 0. Corre-
spondingly, the two-sided alternative hypothesis specifies that the
means differ, that is, there is some nonzero effect,H1: d 6¼ 0.

A Bayesian test of these hypotheses requires the specification of
prior distributions on unknown model parameters. A particularly
influential development in the choice of priors is due to Jeffreys
(1961). In this article, we consider three extensions of Jeffreys’s t
test, namely those discussed by Rouder et al. (2009), Gronau et al.
(2020), (both of which are implemented in the open-source statis-
tics software JASP; JASP Team, 2020), and Pramanik and John-
son (in press). In the following, we adopt Gronau et al.’s (2020)
notation to outline the general framework that encompasses all
three Bayesian t tests. Subsequently, we discuss the specific prior
settings underlying each of the three approaches. Readers inter-
ested in the mathematical details and derivations are referred to
the original articles.

AGeneral Framework

Under the null hypothesis, the specified statistical model (Equa-
tion 2) has two free parameters, l and r. Under the alternative hy-
pothesis, d is an additional free parameter. Let pðl;r jH0Þ and
pðd; l;r jH1Þ denote the prior distributions of the statistical mod-
els corresponding to the null and the alternative hypothesis,
respectively. The marginal likelihood of each hypothesis is calcu-
lated by integrating the conditional probability (density) of the
observed data across all possible parameter values weighted by the
respective prior distributions. Consequently, the Bayes factor for
the Bayesian t test is given by

BF10 ¼ m1ðx;yÞ
m0ðx;yÞ

¼

ð ð ð
pðx;y j d; l;r;H1Þpðd;l;r jH1Þ dd dl drð ð

pðx;y j l;r;H0Þpðl;r jH0Þ dl dr
; (3)

where x ¼ ðx1; . . . ; xnxÞ and y ¼ ðy1; . . . ; ynyÞ denote the observed
data from the two groups and p(.) is the probability (density) of
the data conditional on specific values of the parameters under
each hypothesis.

WALDIAN T TESTS 3
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Equation 3 highlights the relevance of the choice of prior distri-
butions when calculating and interpreting a Bayesian t test. The
prior distributions define the statistical models compared by means
of the Bayes factor as statistical representations of the underlying
(substantive) hypotheses (Vanpaemel, 2010). These statistical
models are not identical to the hypotheses, however. Consider the
alternative hypothesis that d = 0. This is a composite hypothesis
because without a restriction of d to a specific value it does not
admit a particular probability distribution of the data but rather a
complete family of probability distributions. By specifying and
marginalizing across a prior distribution, however, the statistical
model provides a single, specific probability distribution of the
data, namely, the marginal likelihood. Thus, the statistical hypoth-
esis actually tested becomes a simple hypothesis without free pa-
rameters. This hypothesis states that the probability distribution of
the observed data x;y is given by the marginal likelihood function
(Berger et al., 1997, 1999):

H1: x;y�m1ðx;yÞ: (4)

We may write, accordingly,

H0: x;y�m0ðx;yÞ; (5)

stating that the probability distribution of the observed data is
given by the marginal likelihood of the null hypothesis.
How to choose the priors that define the statistical models at

test? A common choice for the nuisance parameters l and r is the
so-called right Haar prior pðl;rÞ / 1=r. The choice is uncritical
as it is a noninformative prior and identical for both statistical
models H0 and H1 (Ly et al., 2016). Moreover, when using this
prior, the Bayes factor can be expressed as a function of the
observed outcome of a classical t test, t ¼ ffiffiffi

n
p ðX � Y Þ=r̂p, where

n ¼ nxny=ðnx þ nyÞ denotes the effective sample size and r̂p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnx � 1Þs2x þ ðny � 1Þs2y

q
� m�1

2 denotes the pooled standard devia-

tion with m ¼ nx þ ny � 2 degrees of freedom. Let Tmðt jDÞ be the
density of a t distribution with m degrees of freedom and noncen-
trality parameter D ¼ ffiffiffi

n
p

d, then the Bayes factor in Equation 3
can be expressed as

BF10 ¼

ð
Tmðt j

ffiffiffi
n

p
dÞpðd jH1Þ dd
TmðtÞ : (6)

For any proper prior pðd jH1Þ, the Bayes factor can be calcu-
lated by simple numerical integration across all possible ds.1 The
Bayesian t tests considered herein differ only with respect to this
prior, that is, the hypothesized distribution of d under the alterna-
tive hypothesis.

Prior t Distributions

As a general framework for a prior on d, Gronau et al. (2020)
propose a scaled t distribution,

pðd j H1Þ ¼ 1
c
Tj

d� ld
c

� �
;

where the scale parameter c, the degrees-of-freedom parameter j,
and the location parameter ld are defined by the analyst before the
analysis. Thereby, precise expectations about how large and how
variable the effect is can be incorporated into the test (see Figure 1).
We will refer to tests based on such prior specifications with l = 0
as informed t tests.

The informed Bayesian t test is particularly useful when
researchers test a theoretically motivated nonzero effect. If, based
on the theory at test, a certain effect is expected, that is, a certain
deviation from d = 0, this expectation should be represented by the
statistical model by defining the location parameter ld accord-
ingly. By specifying c and j, the flexible t distribution also allows
for the quantification of uncertainty about the assumed effect size
or the specification of a random effect, that is, true variation in the
exact value of the effect across experiments.

Another advantage of Gronau et al.’s (2020) prior is that it
encompasses the specification discussed by Rouder et al. (2009) as
a special case. Setting ld = 0 and j = 1, we obtain the central
Cauchy distribution proposed as a default prior under the alterna-
tive hypothesis for Bayesian t tests. The justification for the
Cauchy is primarily based on its favorable mathematical properties
(for details, see Ly et al., 2016; Rouder et al., 2009). We also see a
reasonable substantive interpretation and practical appeal, how-
ever: Given a theoretically motivated null hypothesis that two
group means are expected to be equal—that is, a theoretically
motivated invariance—there might be no reason to assume a cer-
tain fixed effect size or even a direction under the alternative. For
such a case, the Cauchy may be interpreted as a representation of
the distribution of possible nonzero effect sizes in the field when
the hypothesized invariance does not hold. It represents true
effects randomly distributed around the effect predicted by the
null hypothesis. Reasonably, most of these effects can be expected
to be small effects close to the null, where the Cauchy distribution
puts most of its weight. At the same time, there is also substantial
emphasis on large effect sizes that are less prevalent but not
impossible. In the following, we will denote a Bayesian t test
based on a central Cauchy prior under the alternative hypothesis as
default t test.

Nonlocal Alternative Priors

Despite the appeal of the Cauchy distribution as a default prior
on d under the alternative, Johnson and Rossell (2010) note that,
paradoxically, the Cauchy assigns the highest probability density
to the value consistent with the null hypothesis (i.e., d = 0). Not
only may this be unsettling from a substantive point of view, it
also comes with technical difficulties (but see van Ravenzwaaij &
Wagenmakers, in press): Outcomes consistent with the null hy-
pothesis are assigned a high probability also under the alternative
hypothesis. Consequently, the rate with which the Bayes factor
accumulates evidence for the null and the alternative hypothesis is
highly asymmetrical: Whereas strong evidence against the null

1 In some cases (e.g., in the context of the nonlocal alternative priors
proposed by Pramanik & Johnson, in press), this integral can be solved
analytically.
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hypothesis accumulates rapidly for data inconsistent with the hy-
pothesis as the sample size increases, outcomes consistent with the
null hypothesis require much larger sample sizes to indicate com-
pelling evidence in favor of it.
As a remedy, Pramanik and Johnson (in press) recently pro-

posed a different default prior under the alternative hypothesis
when testing a substantively motivated null hypothesis. Unlike the
Cauchy distribution, the proposed nonlocal alternative prior
(NAP) assigns a probability density of 0 to the value of d that is
consistent with the null hypothesis. Thus, compared with the
Bayesian t test based on the Cauchy prior, a Bayes factor based on
an NAP may be more acceptable from a substantive point of view,
and has more symmetrical (and potentially higher) evidence accu-
mulation rates. Pramanik and Johnson (in press) suggest a normal
moment prior on d, that is,

pðd jH1Þ ¼ ðd� ldÞ2
s2r2

/ðd jld; s2r2Þ;

where /ðq j a; bÞ denotes the density of a normal distribution with
mean a and variance b evaluated at q. To make this prior a nonlo-
cal prior, that is, put a prior density of 0 on the value specified
under the null hypothesis, we set ld ¼ d0 ¼ 0. Furthermore,
because the prior is specified for a standardized effect size, we let
r2 = 1, leaving s2 as the only free parameter. As a default choice
for hypothesis tests in behavioral research where most nonzero
effects can be expected to be of small to medium size, Pramanik
and Johnson (in press) recommend setting s2 = .045. Although this
prior represents a proposed default under the alternative, we refer
to a Bayesian t test with an NAP prior as NAP t test to distinguish
it from Rouder et al.’s (2009) default t test based on the Cauchy
prior.

Figure 1 illustrates the prior distributions on the effect size in
the three Bayesian t tests presented above. While the null hypothe-
sis is represented by a point prior on d = 0 in all specifications, the
informed test places a t distribution (in this example with j = 3
degrees of freedom, c = .102, and ld = .350) on d under the alter-
native hypothesis. This particular prior is based on an example
presented by Gronau et al. (2020). The default test uses a scaled
Cauchy distribution instead, which is obtained by specifying j = 1

and ld = 0. Moreover, the prior scale c ¼ 1=
ffiffiffi
2

p
is often used as a

default setting in software implementations, for instance, in the
BayesFactor package in R (Morey & Rouder, 2015) or in JASP.
The NAP test, in contrast, places a normal moment prior as recom-
mended by Pramanik and Johnson (in press) and specified above
on d. Note that both the default and the NAP t test clearly corre-
spond to two-sided alternative hypotheses, as they are symmetric
and place half of their weight on either side of d = 0. The informed
t test with the given specification, in contrast, rather corresponds
to a one-sided test as it places only around 2% of its weight on
effect sizes smaller than 0. In principle, all prior distributions
could be truncated at 0 to test one-sided hypotheses. Without loss
of generality, however, we focus on nontruncated prior distribu-
tions in this article. While an informed test is appropriate when the
theoretically motivated hypothesis predicts some nonzero effect,
the default and the NAP test are more appropriate when testing a
substantively motivated invariance.

Error Probabilities

From a Bayesian perspective, inference should be about induc-
tive probabilistic statements about hypotheses conditional on the
observed data (Jeffreys, 1961). Importantly, this does not require
any reference to procedural properties such as long-run error rates

Figure 1
Illustration of Prior Distributions in Bayesian t Tests
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given that one of the hypotheses is assumed to be true (Wagen-
makers & Gronau, 2018). Rouder (2014) summarizes that “the key
to understanding Bayesian analysis is to focus on the degree of
belief for considered models, which need not and should not be
calibrated relative to some hypothetical truth” (p. 308).
The view that Bayesian inference is purely inductive has been

challenged, however (e.g., Gelman & Shalizi, 2013). As we argue
above, we believe that different contexts impose different desider-
ata on any procedure of statistical inference. While methods for
quantifying statistical evidence and updating subjective beliefs
certainly have their place in scientific research, they constitute but
one tool in a researcher’s toolkit. Therefore, we endorse the view
that consideration and control of frequentist properties is an impor-
tant endeavor also in the context of Bayesian analysis (see Berger
& Bayarri, 2004; Gu et al., 2016; Jeon & De Boeck, 2017; San-
born et al., 2014).
The focus of this article is on error probabilities. We may differ-

entiate between two kinds of error probabilities (Wagenmakers &
Gronau, 2018), however, and this distinction is particularly impor-
tant in the interplay of Bayesian and frequentist procedures. We call
the first kind Bayesian error probabilities: A Bayesian analysis of
competing hypotheses renders posterior probabilities, that is, proba-
bilities of the hypotheses conditional on the observed data (see
Equation 1). Imagine a researcher who obtains PðH1 j dataÞ ¼ :90.
Given this result, what is the probability that the researcher errs on
rejecting the null hypothesis? The answer is simple from a Bayesian
perspective: It is the extent to which the researcher believes in the
null hypothesis after seeing the data, that is, the posterior probabil-
ity PðH0 j dataÞ ¼ 1� PðH1 j dataÞ ¼ :10. The important charac-
teristic of Bayesian error probabilities is that they are conditional
both on the observed data and the specified prior probabilities of
the hypotheses. Let aB and bB denote the Bayesian (conditional)
probabilities of falsely rejecting the null and the alternative hypoth-
esis, respectively. For equal prior probabilities, that is, PðHhÞ ¼
:50 for h = 0, 1, the Bayesian error probabilities are given by

aB ¼ 1
BF10 þ 1

;

bB ¼ BF10
BF10 þ 1

:

(7)

Equation 7 illustrates an interesting property of Bayesian error
probabilities: If the Bayes factor BF10 tends to infinity (i.e., if we
gain extreme evidence in favor of the alternative hypothesis), then
aB goes to 0. Thus, when conditioned on data that provide infinite
support for the alternative hypothesis, the conditional probability
to commit an error by rejecting the null is zero. The same holds
true for bB if the data show unequivocal evidence for the null hy-
pothesis (i.e., if BF10 ! 0). In this case, the Bayesian probability
to err on accepting the null is zero.
The second kind of error probabilities is the one we call fre-

quentist error probabilities. The critical difference to the Bayesian
kind is that these error probabilities do not reflect subjective belief
or uncertainty and are thus not conditional on a particular set of
observed data or prior probabilities of hypotheses. Rather, they are
stable properties of the inference procedure under the assumption
that either H0 or H1 is true. The rationale underlying these error

probabilities is that they characterize the accuracy of an inference
procedure in the long run. This focus is intimately linked to a
behaviorist interpretation of hypothesis testing as a rule to guide
decisions: We either reject the null hypothesis or we accept it,
meaning that without any reference to whether we believe the
hypotheses to be true or false we take a specific course of action
with regard to them (Lakatos, 1978; Neyman & Pearson, 1933).
By doing so, we commit a Type I error if we reject the null hy-
pothesis when it is true, or a Type II error if we accept the null
when it is false. To ensure the quality of our decisions, we require
that the procedure (or rule) on which the decisions are based have
low probabilities to commit either error (Neyman, 1977).

Formally, the frequentist error probabilities of a statistical hy-
pothesis test are defined as

a ¼ Pðreject H0; H0Þ;
b ¼ Pðreject H1; H1Þ; (8)

where Pðreject Hh; HhÞ denotes the probability of the test to
reject hypothesis h (h = 0, 1) when it is true. That is, for data gen-
erated under the statistical models specified in the test, the proba-
bilities to reject the corresponding hypotheses are a and b,
respectively. The advantage of Neyman-Pearson tests (and Wald’s
sequential tests, as we outline below) is that for given statistical
hypotheses H0 and H1, the procedure can be designed to satisfy
certain error probabilities. Thus, by choosing an appropriate exper-
imental design (e.g., based on an a priori power analysis; Cohen,
1988) researchers can ensure that the test of their statistical
hypotheses has a sufficiently small risk of an erroneous decision.

It has been argued that frequentist error probabilities are only
relevant or appropriate in pre-experimental considerations but no
longer when data have been observed. According to this argument,
they only reflect properties of the procedure and ignore the specific
information provided by the observed data (Berger et al., 1997;
Wagenmakers & Gronau, 2018). This criticism has been chal-
lenged, however, by the severity approach introduced and most
prominently represented by the philosopher Deborah Mayo as an
improvement of Popper’s well-known critical rationalism (e.g.,
Mayo, 1996, 2018; Mayo & Spanos, 2006; see also Lakatos, 1978;
Westermann & Hager, 1986). According to this perspective, fre-
quentist error probabilities do not only provide insight into long-
run properties that are relevant for planning a study or for the total-
ity of performed tests. Instead, frequentist error probabilities also
provide a means to assess the severity with which a single substan-
tive hypothesis has been tested. A test of a certain hypothesis is
more severe (i.e., more rigorous) if it has a higher probability to
detect a deviation from what we expect under the hypothesis.
Although low frequentist error probabilities do not provide a direct
measure of this severity, they are a necessary condition for a
severe test (Lakatos, 1978; Mayo & Spanos, 2006; Westermann &
Hager, 1986). Therefore, not only from a behaviorist, decision-
making perspective but also from a philosophy-of-science point of
view, frequentist error probabilities are relevant and worth consid-
ering or, better yet, controlling (Sanborn et al., 2014).

Frequentist Error Probabilities in Bayesian t Tests

The plea to consider frequentist concepts such as error probabil-
ities and statistical power (1 – b, the complement of the Type II
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error probability) also in the context of Bayesian t tests is not par-
ticularly new. For example, Berger and Bayarri (2004, p. 58) argue
that “statisticians should readily use both Bayesian and frequentist
ideas”. There have been previous efforts in the literature to esti-
mate error probabilities of Bayesian t tests by simulation (e.g.,
Jeon & De Boeck, 2017; Sanborn & Hills, 2014; Schnuerch &
Erdfelder, 2020; Schönbrodt et al., 2017; Yu et al., 2014), to con-
trol them explicitly (e.g., Gu et al., 2016; Hoijtink et al., 2016;
Schönbrodt & Wagenmakers, 2018; Stefan et al., 2022), and to
unify Bayesian and frequentist test procedures (e.g., Bayarri et al.,
2016; Berger, 2003; Berger et al., 1997, 1999). In contrast to the
frequentist error probabilities that we consider in this article, how-
ever, such unification efforts have focused mostly on error rates
conditional on the observed data (Berger et al., 1994).
The key to controlling unconditional frequentist error probabil-

ities is the consideration of a reference set of possible outcomes of
a specific test procedure. Neyman-Pearson tests are based on pos-
sible outcomes of a hypothesis test with a fixed sample size. If the
sampling distribution of the test statistic is known under H0 and
H1, error probabilities are controlled by choosing an appropriate
critical value of the test statistic and a minimal sample size. In the
same vein, if the sampling distribution of the Bayes factor is
known, it is straightforward to determine an acceptance/rejection
threshold such that the probability for the Bayes factor to exceed
this threshold under certain population scenarios is controlled.
Consider the following example: We wish to perform a Bayesian
t test with controlled error probabilities under the two point
hypotheses H0: d ¼ d0 and H1: d ¼ d1. For a given sample size
N, the sampling distribution of the test statistic TN is known under
both hypotheses. Let tcrit denote the critical value of the test statis-
tic such that PðTN > tcrit; d0Þ ¼ a. If the Bayes factor can be
expressed as a strictly monotonically increasing function of the
test statistic, BF(TN), it follows that PðBFðTNÞ > BFðtcritÞ; d0Þ ¼
PðTN > tcrit; d0Þ ¼ a. Equivalently, PðBFðTNÞ > BFðtcritÞ; d1Þ ¼
PðTN > tcrit; d1Þ ¼ 1� b. Thus, a Bayesian t test with a deci-
sion threshold BF(tcrit) has frequentist error probabilities a and
b under d = d0 and d1, respectively.
If, however, the sampling distribution of the Bayes factor is

unknown, it is not possible to analytically determine threshold val-
ues to control frequentist error probabilities. In a Bayesian t test,
the alternative hypothesis as represented by the prior does not cor-
respond to a point, as in the above example, but to a distribution.
To our knowledge, controlling the frequentist error probabilities
under such a statistical model in a fixed-sample design would
require a numerical or a simulation approach. Such a method is
implemented in Bayes factor design analysis, where threshold val-
ues for the Bayes factor and required sample sizes are calibrated
by means of extensive Monte Carlo simulations (Schönbrodt &
Wagenmakers, 2018; Stefan et al., 2019, 2022).
In our view, the above mentioned efforts to assess and control

frequentist properties in the context of Bayesian hypothesis tests
have made valuable contributions to the statistics toolkit. To com-
plement them, we propose a procedure that (a) aims at unifying
Bayesian t tests with frequentist error probability control in the
Neyman-Pearson sense, (b) retains a fully Bayesian interpretation,
and (c) does not require any simulations.
In contrast to fixed-sample designs, our analytical approach con-

siders a reference set of possible outcomes that provide the same
degree of evidence instead of having the same sample size. This is

the central idea of what is known as sequential analysis (Barnard,
1949; Wald, 1947). Considering a reference set of experimental
outcomes with a certain (minimum) amount of statistical evidence
provides a strikingly simple and efficient means to control error
probabilities under the specified statistical hypotheses. This means
is at the heart of the SPRT which was developed and introduced
by Abraham Wald in the 1940s (Wald, 1947) and which also pro-
vides the basis for the Waldian t test we propose herein.

Sequential Probability Ratio Tests

In contrast to conventional statistical tests, sequential proce-
dures dispense with the requirement to define a fixed sample size a
priori. Instead, the data are sampled sequentially: After any new
step of the sampling process (potentially after every single obser-
vation), the test requires a decision to either continue or terminate
sampling. This decision is based on a stopping rule, and the choice
of this rule defines the long-run properties of the sequential proce-
dure (i.e., expected sample size and error rates). On average, se-
quential tests require substantially smaller sample sizes than
conventional fixed-sample tests. This renders them notably more ef-
ficient for many situations (Lakens, 2014; Lang, 2017; Schnuerch
& Erdfelder, 2020; Schönbrodt et al., 2017).

The stopping rule employed in the SPRT is based on the likeli-
hood ratio (LR). The LR denotes the probability (density) of the
data under one set of specific parameter values relative to that
under a different set. As before, let x ¼ ðx1; . . . ; xnxÞ and y ¼
ðy1; . . . ; ynyÞ be the observed data, and pðx;y; hÞ the probability
function of the data given the true parameter vector h = (d, l, r).
We are interested in testing the simple hypothesis H0: h ¼ h0
againstH1: h ¼ h1. Similar to Equations 4 and 5, these hypotheses
can be expressed in terms of the probability distribution that they
imply, that is,

H0: x;y� pðx;y; h0Þ;
H1: x;y� pðx;y; h1Þ: (9)

For the sequential test of these hypotheses, the likelihood ratio is
computed after each additional observation, starting at nx ¼ ny ¼ 1:

LRN ¼ pðx;y; h1Þ
pðx;y; h0Þ ; (10)

and at each step, one of the following three decisions is made:

1ÞAcceptH1 and rejectH0 whenLRN $A;
2ÞAcceptH0 and rejectH1 whenLRN #B;
3Þ Sample a new independent observation xnxþ1 or ynyþ1

whenB, LRN ,A: (11)

To complete the specification of the SPRT’s stopping rule,
appropriate values for the decision boundaries A and B must be
defined. Wald (1947) showed that the determination of these boun-
daries in practical applications, such that the procedure does not
exceed certain error probabilities a and b, is straightforward. By
definition of Rule 1 in Equation 11, any sample that leads the ana-
lyst to acceptH1 satisfies the following inequality,

WALDIAN T TESTS 7

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.



pðx;y; h1Þ$A � pðx;y; h0Þ;
indicating that this sample is at least A times more likely to occur
under H1 than under H0. This means that the probability to obtain
any sample that leads to the acceptance of H1 is at least A times
larger under H1 than under H0. The probability to obtain such a
sample, in turn, is equivalent to the total probability of accepting
H1. Thus, the probability to accept the alternative hypothesis with
the given procedure is at least A times larger under the alternative
than under the null. In our notation (see Equation 8), the latter is
defined as the Type I probability a and, because the SPRT eventu-
ally terminates with accepting either of the specified hypotheses
(see Wald, 1947, Appendix A.1, for a proof), the former is defined
as 1 – b (statistical power). Hence, 1 – b $ Aa. Following the
same reasoning for a sample that leads the researcher to accept
H0, we obtain b # B(1 – a). Rewriting these inequalities shows
that A # (1 – b)/a and B$ b/(1 – a).
Wald (1947) proved that treating these inequalities as equalities

to define the boundary values of the SPRT in practice “cannot
result in any appreciable increase in the value of either a or b” (p.
46). In fact, because LRN almost always strictly exceeds the
boundary at termination (a phenomenon called overshooting), the
resulting error rates of the procedure will undercut the nominal a
and b. If exact error control is required, the threshold values A and
B can be numerically adjusted to result in the nominal error rates
for the specified hypotheses (Stefan et al., 2022). However, Wald
(1947) conjectured that the decrease in the SPRT’s efficiency due
to its conservative behavior is negligible, and recent simulation
studies have corroborated this supposition (Schnuerch et al., 2020;
Schnuerch & Erdfelder, 2020). Moreover, the availability of sim-
ple analytical solutions increases the likelihood that the approach
is understood and used by substantive researchers. Thus, to con-
struct an SPRT for the test of two simple hypotheses with upper-
bound error probabilities a and b, a researcher may follow the
sampling plan given by Equation 11 with threshold values defined
by

A ¼ 1� b
a

;

B ¼ b
1� a

:

(12)

Sequential Bayesian t Tests

Sequential sampling plans have also been proposed for Bayes-
ian t tests (Schönbrodt et al., 2017; Wagenmakers et al., 2012).
The procedure is typically referred to as sequential Bayes factors
(SBFs). Similar to the likelihood ratio in the SPRT, the Bayes fac-
tor in SBFs is calculated repeatedly during the sampling process
until a decision is made to terminate the procedure. According to
the likelihood principle (Berger & Wolpert, 1988), the interpreta-
tion of the Bayes factor as a measure of evidence does not depend
on how the data were sampled. Consequently, this interpretation
remains unaltered also in sequential applications, thus giving justi-
fication to sequential Bayesian t tests (Hendriksen et al., 2020;
Rouder, 2014; but see de Heide & Grünwald, 2021).

Stefan et al. (2022) recently pointed out that SBFs and SPRTs
can be regarded as examples of a general sequential testing frame-
work. In this framework, appropriate threshold values must be
chosen to control error probabilities. For SBFs, these threshold
values can be found by simulating the procedure for a range of
possible thresholds with data generated from a specific effect size
(i.e., based on Bayes factor design analysis). We agree with Stefan
et al., that, apart from fundamental differences in philosophical
foundations, SBFs and SPRTs can be seen as two instances of the
same conceptual framework. Both are based on sequentially com-
puted likelihood ratios with predefined thresholds, one on simple
likelihood ratios (SPRTs) and the other on marginal likelihood
ratios (SBFs). In contrast to Stefan et al., however, we maintain
that error probability control does not require a simulation-based
approach to SBFs assuming specific effects under H1. Rather, it
can be conducted analytically based on the general theory of the
SPRT assuming either specific effects as in Hajnal’s t test (see
Schnuerch & Erdfelder, 2020) or an effect size distribution under
H1. This analytic approach is more efficient in practice and also
promotes a deeper understanding of the substantive meaning of
the statistical models at test, as well as the theoretical links and
underlying assumptions of SBFs and SPRTs.

We fully exploit the consequences of the SBF–SPRT relation-
ship in this article. We argue that sequential Bayesian t tests can
be construed as a special case of the SPRT. This unified procedure,
which we call Waldian t test, controls frequentist error probabil-
ities as defined in Equation 8 for the statistical models specified by
the prior distributions. The general idea of such a procedure was
outlined already in 1947 by Abraham Wald and also briefly dis-
cussed by Berger et al. (1999). Further mathematical justifications
can be found in Hendriksen et al. (2020).

Waldian t Tests

Waldian t tests combine Bayesian t tests with an SPRT’s sam-
pling plan. They are defined by the stopping rules given in Equa-
tion 11 where the test statistic LRN is replaced by BF10(N), that is,
the Bayes factor given in Equation 6, where N denotes the given
sample size across both groups. Further, the threshold values A
and B are defined according to the simple formulas suggested by
Wald (1947) and given in Equation 12. Consequently, a Waldian t
test is carried out by continuing to sample independent observa-
tions xi and yj as long as

b
1� a

,BF10ðNÞ, 1� b
a

; (13)

and terminating and acceptingH0 orH1 as soon as the left or right
inequality is violated, respectively. The resulting procedure has
frequentist error probabilities as defined in Equation 8, with a and
b serving as upper bounds under the statistical null and alternative
hypothesis, respectively.

Priors Imply Simple Hypotheses

One might object that replacing LRn by BF10(N) is not justified
because the former is based on simple hypotheses and the latter on
composite hypotheses. It is true that the SPRT is generally based
on the specification of two competing point hypotheses (e.g., d =
d0 vs. d = d1). The Bayes factor, in contrast, specifies prior
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distributions for the unknown parameters (e.g., d�pðd jH1Þ). The
distinction between a point and a distributional hypothesis is not
identical to that between a simple and a composite hypothesis,
however. As we explained above, by specifying a proper prior dis-
tribution and marginalizing over it, the probability distribution of
the observed data is completely specified under each hypothesis
and does not depend on any free parameters anymore. Thus, the
two statistical hypotheses actually compared by the Bayes factor
are always simple hypotheses as defined by the specified priors
(Berger et al., 1997, 1999; see also Wald, 1947).
We introduced mh(data) as the marginal likelihood of hypothesis

h (h = 0, 1). Conceptually, a point hypothesis is just a special case
of a prior distribution on a parameter. Thus, we may use the univer-
sal notation introduced in Equations 4 and 5 based on marginal like-
lihoods to represent the likelihood ratio as well as the Bayes factor
by the ratio m1ðdataÞ=m0ðdataÞ, where mh(data) denotes the likeli-
hood of hypothesis h marginalized across either a continuous prior

distribution, that is, mhðdataÞ ¼
ð
H
pðdata j hÞ pðh j HhÞ dh, or a

prior point mass, that is, mhðdataÞ ¼ pðdata j hhÞ.

Frequentist Justification

What are the implications of using a marginal likelihood ratio
for the SPRT? Let us first consider the prior on the nuisance pa-
rameters (l and r). Wald (1947) himself suggested to use a prior
(although he used the term weight function) very similar to the
right Haar prior for the unknown scale parameter to construct a se-
quential t test. In fact, the denominator of the Bayesian t test as
presented in Equation 6 is identical to that in the likelihood ratio
of Rushton’s and Hajnal’s sequential probability ratio t tests
(Schnuerch & Erdfelder, 2020). de Heide and Grünwald (2021)
refer to the right Haar prior as “type 0 prior” because it has favor-
able properties in the context of optional stopping: As Hendriksen
et al. (2020) showed, when using the right Haar prior in the Bayes-
ian t test, the Type I error probability has a fixed value for any true
(l, r) in the admissible parameter space. Thus, if d = 0, a Waldian
t test as defined in Equation 13 has the desired Type I error proba-
bility a irrespective of the true values of the nuisance parameters.
This result also holds true for the error probability under the al-

ternative hypothesis. In this case, however, d is no longer con-
strained to a single point in the parameter space. Hence, the Type
II error probability b is a single-valued function of the parameter d
in the parameter space, that is, b(d) for d [ X1. Therefore, for a
Waldian t test as defined in Equation 13, the error probability
under the alternative hypothesis does not refer to any specific
effect size. Instead, it is an expected error probability, that is, a
weighted average of error probabilities across X1:ð

d2X1

bðdÞpðd jH1Þ dd ¼ b:

Hendriksen et al. (2020, p. 8) refer to this result as semifre-
quentist because controlling the expected error probability might
appear unsatisfactory from a frequentist point of view. We believe,
however, that this procedure has a fully frequentist justification in
many situations, and that in these situations, the average error
probability constitutes a proper frequentist error probability as

defined in Equation 8 (see also Gillett, 1994). As we noted above,
a prior distribution can be attached with appealing frequentist
interpretations, for example, as a model of the variation of true
effect sizes across different experiments. This random-effect
notion is routinely employed in meta-analysis and hierarchical
modeling, for example (Borenstein et al., 2009; Hedges & Olkin,
1985). It reflects the reasonable position that the true effect size,
even if the studied underlying mechanism is the same, is influ-
enced by characteristics of the experiment and the participants.
Thus, variation in true effects across studies is to be expected
(Ulrich et al., 2018), and the prior distribution represents the ana-
lyst’s hypothesis about this variation. Consequently, proper error
control is achieved if we control the expected error probability
given the distribution of effect sizes across studies, not the error
probability associated with a specific effect size selected more or
less arbitrarily from this distribution.

Another appealing interpretation is that of a “power weight
function” (Bayarri et al., 2016, p. 101). According to this interpre-
tation, the prior defines certain regions of the admissible range of
effect sizes for which high statistical power is desired, while con-
trolling the expected error probability (and thus, the expected sta-
tistical power) across the entire range. In sum, we argue that a
Waldian t test has a fully frequentist justification whenever there is
a meaningful substantive interpretation of pðd j H1Þ with respect
to properties of d.

Bayesian Justification

A Bayesian may hold different standards as to what makes the
interpretation of a prior meaningful. From a subjective perspec-
tive, priors and the statistical models they define are mathematical
abstractions of substantive hypotheses, not reflections of existing
data-generating processes (Rouder et al., 2016). Accordingly, the
interpretation of the Bayes factor as statistical evidence for the
specified models holds, irrespective of how the data were sampled
and what the true data generating process may be. This position is
why Bayesians have stressed that sequential testing (and optional
stopping) does not affect inference from the Bayes factor (e.g.,
Berger & Wolpert, 1988; Edwards et al., 1963; Lindley, 1957;
Rouder, 2014; Rouder & Haaf, 2020), despite recently raised con-
cerns (de Heide & Grünwald, 2021; Sanborn et al., 2014; Sanborn
& Hills, 2014; Yu et al., 2014).

Waldian t tests require the analyst to define stopping criteria and
calculate the Bayes factor repeatedly until one of the two thresh-
olds is reached. Importantly, however, they fully preserve the
assumed prior structure of Bayesian t tests. Thus, if we accept that
the interpretation of the Bayes factor is unaffected by the stopping
rule, Waldian t tests have the same fully Bayesian justification as
Bayesian t tests. As long as sampling is terminated only upon
crossing the predefined thresholds, the procedure automatically
satisfies the desired frequentist properties. This does not affect,
nor is it affected by, any Bayesian interpretation of the evidence
provided by the particular observed sample. The Bayes factor is
still a measure of statistical evidence for the specified models and
it may be used to calculate posterior probabilities as well as Bayes-
ian error probabilities. Hence, Waldian t tests provide the best of
two worlds by controlling frequentist error probabilities of Bayes-
ian t tests while preserving all of their Bayesian properties.
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Simulations

We discussed the properties of Waldian t tests above based on
previously presented mathematical derivations (Berger et al.,
1999; Hendriksen et al., 2020; Wald, 1947). However, these deri-
vations do not account for nuisance factors such as overshooting at
the point of termination. Moreover, while the procedure controls
expected error probabilities across the specified prior distributions,
we know little about the error probabilities at specific values of the
standardized effect size. To address these open questions, we
examined the Waldian t test in a series of Monte Carlo simula-
tions. These simulations were performed in R (R Core Team,
2021), based on publicly available functions for informed Bayes-
ian t tests provided by Gronau et al. (2020) and closed-form
expressions for Bayes factor calculation for NAP t tests provided
in Pramanik and Johnson (in press). We simulated Waldian t tests
for the prior specifications shown in Figure 1. Note that these pri-
ors are just convenient illustrative examples. The particular situa-
tion at hand and substantive considerations as to the meaning of
the prior may require different priors. The simulation scripts as
well as all simulated data are available at the accompanying Open
Science Framework repository.

Expected Error Probabilities

To examine how overshooting affects the expected error rates,
we simulated data from the statistical models specified in the Wal-
dian t tests. Under the null hypothesis, we drew random data from
two normal distributions with means lx ¼ ly ¼ 0 and common
standard deviation r = 1. Under the alternative hypothesis, an
effect size d was randomly drawn from the specified prior in a first
step. The data were then sampled from two normal distributions
with means lx = d and ly = 0. For each replication, the Bayes fac-
tor was calculated for an initial sample size of nx ¼ ny ¼ 2. This
was subsequently increased by þ1 in each group2 until the Bayes
factor reached one of the specified boundary values A = (1 – b)/a
or B = b/(1 – a). The nominal error probabilities were systemati-
cally varied along a [ {.005,.050} and b [ {.050,.100}. As soon as
one of the two thresholds was crossed, sampling was terminated
and the respective hypothesis was accepted. If no threshold had
been reached at nx ¼ ny ¼ 25; 000, sampling was terminated and
the hypothesis better supported by the Bayes factor was accepted.
This occurred in .03% of the cases. For each of the 24 parameter
combinations (i.e., 2 a levels 3 2 b levels 3 2 scenarios H0 and
H1 3 3 prior distributions under H1), 10,000 replications were
simulated.
The results of this simulation are shown in Figure 2. Empirical

error rates (i.e., proportion of replications with decisions in favor
of the false hypothesis) as well as 95% CIs are displayed as a func-
tion of the true data-generating mechanism (Panel A: null hypothe-
sis; Panel B: alternative hypothesis), nominal error rates (a and b),
and specified prior settings (informed vs. default vs. NAP). Under
the null hypothesis (Panel A), Waldian t tests reliably control
Type I error rates. The proportion of erroneous decisions closely
approximate the nominal a. As expected, due to overshooting, the
tests (the default test in particular) are slightly conservative. This
deviation is only small, however, and does not affect the statistical
power of the tests: The empirical error rates under the alternative
hypothesis (Panel B) almost perfectly match the nominal bs for all

simulated scenarios. Thus, despite the impact of overshooting,
Waldian t tests provide reliable and accurate control of expected
frequentist error probabilities in practice. Table A1 in Appendix
contains the average sample sizes (as well as the 50th, 75th, and
95th quantile) of the simulated Waldian t tests.

Error Probabilities for Fixed Effect Sizes

In a second set of simulations, we assessed the characteristics of
Waldian t tests when simulating data with a fixed effect size. To
that end, we drew random data from two normal distributions with
common standard deviation r = 1, lx = d, and ly = 0. We varied
the effect size d from d = .00 to d = .50 in steps of .05. As in the
first simulation, Bayes factors were calculated for an initial sample
size of nx ¼ ny ¼ 2. These samples were increased by þ1 in each
group until the Bayes factor reached one of the specified threshold
values or the maximum sample size of nx ¼ ny ¼ 25; 000 (which
happened in .01% of the cases). The nominal error probabilities
underlying the calculation of threshold values were held constant
at a = b = .05. Again, 10,000 replications per parameter combina-
tion were simulated.

For comparison, we also simulated Hajnal’s t tests (Schnuerch
& Erdfelder, 2020) under the same population scenarios. Whereas
the null hypothesis in Hajnal’s t test is identical to that in Waldian
t tests (i.e., d = .00), a point hypothesis is specified under the alter-
native (i.e., d = d1). Hence, it is based on the simple ratio of a non-
central to a central t density. We simulated two-sided tests with
the alternative hypothesis specifying very small to medium effect
sizes, d1 [ {.10, .20, .50}. All simulation parameters were identical
to the Waldian t test simulations, including the true effect size d
which varied from d = .00 to d = .50 and the nominal error proba-
bilities a and b. All simulated trajectories of Hajnal’s t tests
reached the decision thresholds A or B before reaching the maxi-
mum sample size.

The simulation results are displayed in Figure 3. As expected,
while Waldian t tests show the desired error probability a = .05
when d = .00, the statistical power 1 – b increases monotonically
with the effect size (Panel A1). For extremely small effect sizes
close to zero, all tests have low statistical power. With increasing
effect size, however, the power increases rapidly. For d , .30, the
power of the default t test clearly exceeds that of the informed and
the NAP t test. This is not surprising because the Cauchy prior
under the alternative hypothesis in the default test places consider-
ably more weight on these small effect sizes than the priors in the
other two tests. The higher power comes at a cost, however:
Expected sample sizes in the default test are much larger for small
effect sizes than in the other tests (Panel A2). This reflects the low
evidence accumulation rate induced by the high similarity of sta-
tistical models specified underH0 andH1 in the default test (John-
son & Rossell, 2010).

Hajnal’s t test reliably controls error probabilities when the true
effect size matches one of the hypothesized effect sizes (i.e., d =
.00 or d = d1) or when it is larger. If the true effect size is smaller

2We chose pairwise sampling for reasons of computational efficiency.
This is not necessary in practice, however. Additional observations can be
drawn randomly from either group without compromising error control.
Note, however, that the test may be less efficient if group sample sizes
differ systematically (Schnuerch & Erdfelder, 2020).
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than hypothesized, however, statistical power is smaller than 95%
(Panel B1). The operating characteristic (i.e., the power function)
of Hajnal’s t test for d1 = .10 is very similar to that of the Waldian
t test based on a default Cauchy prior. At the same time, expected
sample sizes are much smaller (Panel B2) for small effect sizes
(i.e., d # .20). In this range, Hajnal’s t test based on d1 = .10 is
more sensitive to deviations from the null, and evidence accumu-
lates faster. If the true effect size is larger than expected, however,
the statistical models underH0 and H1 are more difficult to distin-
guish, and Waldian t tests based on a default Cauchy prior become
more efficient than Hajnal’s t test (see also Stefan et al., 2022).
Interestingly, the operating characteristics of Waldian t tests

based on the informed t prior and on the NAP are quite similar to
each other and to Hajnal’s t test based on d1 = .20 across the

simulated range of effect sizes. This similarity is not surprising
when considering the range on which the respective priors place
most of their weight (see Figure 1). Note, however, that the compar-
ison of operating characteristics and efficiency between the differ-
ent prior specifications is somewhat biased because the NAP (as
well as the default Cauchy prior and Hajnal’s two-sided t test) pla-
ces only half of its weight on positive effects. The informed t test,
in contrast, essentially corresponds to a one-sided test. In a more
balanced comparison, a one-sided NAP t test (i.e., with a prior trun-
cated at 0) would be more powerful and more efficient for small to
medium effect sizes than the informed t test considered here.

Importantly, the presented simulation results depend on the
specific prior settings considered in this article. For different
prior distributions (e.g., truncated distributions) or threshold

Figure 2
Empirical Error Rates of Waldian t Tests

Informed t  Test Default t  Test NAP t  Test
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Note. 10,000 replications per data point. Error bars denote 95% confidence intervals. Informed t
test: t prior under the alternative (ld = 0.350, c = .102, j = 3); Default t test: Scaled Cauchy prior
under the alternative (ld ¼ 0; c ¼ 1=

ffiffiffi
2

p
, j = 1); NAP t test: normal moment prior under the al-

ternative (ld ¼ 0; s2 ¼ 0:045; r2 ¼ 1). (A) Data generated under the null hypothesis (d = 0);
(B) Data generated under the alternative hypothesis. See the online article for the color version of
this figure.
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values based on different (expected) error probabilities, the
exact results will differ. However, the simulations demonstrate
that the Type II error probability b(d) of a Waldian t test may
vary heavily depending on the true effect size d = 0 that
underlies a specific study. In other words, while Waldian
t tests reliably control the expected error probability b given
the hypothesized prior distribution of effect sizes (that is, a
weighted average of b(d)), they do not allow clear-cut state-
ments about the error probability b(d) for any fixed effect size
d. To control error probabilities at fixed effect sizes with max-
imum efficiency, Hajnal’s t test is better suited (Schnuerch &
Erdfelder, 2020).

Frequentist Implications of Conventional Criteria

Jeffreys (1961; see also Lee & Wagenmakers, 2013) sug-
gested a taxonomy for the interpretation and communication of
statistical evidence based on half-units of the Bayes factor on a
log10 scale. According to this taxonomy, a Bayes factor greater
than 101/2 � 3 denotes moderate evidence, greater than 101 =

10 represents strong evidence, and greater than 103/2 � 30 can
be interpreted as very strong evidence. Kass and Raftery (1995)
proposed a more stringent classification based on units of twice
the natural logarithm of the Bayes factor. According to their
definition, the evidence indicated by the Bayes factor can be
classified as positive (moderate) when it is between 3 and 20,
strong when it exceeds 20, and very strong when it is above
150.

The specific threshold values of conventional categories like
these might serve as anchors for researchers who aim at collecting
sufficient evidence with a Bayesian t test to make a statistical deci-
sion. For example, a researcher could decide a priori to increase
the sample size until the Bayes factor indicated strong evidence
according to Jeffreys’s definition in favor of a hypothesis. Accord-
ingly, this researcher would set up a sequential Bayesian t test
with upper and lower threshold values A = 10 and B = 1/10,
respectively. The verbal label “strong evidence” associated with
these thresholds, however, might convey misleading intuitions
about the frequentist properties of the sequential procedure.

Figure 3
Properties of Waldian t Tests and Hajnal’s t Test for Fixed Effect Sizes
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Note. Nominal error probabilities: a = b = .05. Panels A1 and B1 show the probability to accept the alterna-
tive hypothesis; the upper and lower dashed horizontal lines denote 95% and 5% probability, respectively.
Panels A2 and B2 show expected sample sizes. Panels A1 and A2 show results for Waldian t tests based on the
following specifications: Default = scaled Cauchy prior under the alternative (ld ¼ 0; c ¼ 1=

ffiffiffi
2

p
, j = 1);

Informed = t prior under the alternative (ld = 0.350, c = .102, j = 3). NAP = normal moment prior under the al-
ternative (ld ¼ 0; s2 ¼ 0:045; r2 ¼ 1). Panels B1 and B2 show results for Hajnal’s t tests based on the alterna-
tive hypothesis d = d1 with d1 [ {0.10, 0.20, 0.50}. See the online article for the color version of this figure.
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To assess the long-run error rates of a sequential Bayesian t test
based on heuristic threshold values, we can use the formulas
derived by Wald (1947). By solving Equation 12 for a and b, we
obtain the approximate error probabilities of a sequential test with
given threshold values. For a Bayesian t test with upper and lower
thresholds A and B on BF10, this renders

a ¼ 1� B
A� B

(14)

and

b ¼ AB� B
A� B

: (15)

If the chosen threshold values are symmetric, that is, B = 1/A,
the resulting test procedure has symmetric error probabilities as
well. In this case, the above formulas reduce to

a ¼ b ¼ 1
Aþ 1

: (16)

According to Equation 16, a sequential Bayesian t test with
symmetric thresholds of 10 and 1/10 is associated with fre-
quentist error probabilities a = b = .09. These Type I and
Type II error rates might seem unexpectedly high when con-
sidering that the corresponding verbal label implies “strong
evidence” (according to Jeffreys’s taxonomy) and that statisti-
cal decisions based on a Bayes factor of 10 have typically
been compared with NHST decisions based on a = .05 (e.g.,
Brysbaert, 2019). Less surprisingly, employing a threshold
denoting “moderate evidence” according to Jeffreys (A = 1/B
= 3) implies even larger error rates: a = b = .25. This endorses
previous recommendations in the literature to avoid making
decisions based on such low threshold values (Schönbrodt et
al., 2017, p. 332).

Indeed, the verbal labels suggested by Kass and Raftery
(1995) seem more in line with the frequentist error probabilities
of a sequential procedure based on these thresholds: A sequen-
tial Bayesian t test with symmetric thresholds of 20 and 1/20,
which denotes strong evidence in this definition, implies the fre-
quentist error probabilities a = b = .048. Very strong evidence,
in turn, denoted by threshold values of 150 and 1/150, is then
associated with a = b = .007. Table 1 summarizes the nominal
frequentist error rates of sequential Bayesian t tests for selected
threshold values, as well as the verbal labels associated with
these thresholds according to Jeffreys (1961) and Kass and Raf-
tery (1995).

It is important to note that Equations 14 and 15 define upper
bounds to error rates of the sequential procedure associated
with certain thresholds A and B. These should not be confused
with Bayesian error rates conditional on a particular observed
result BF10(N) . A or BF10(N) , B. Nevertheless, Equation 16
illustrates an interesting relationship between frequentist and
Bayesian error rates of sequential Bayesian t tests: If the
researcher terminated the sampling process as soon as BF10(N)
was exactly equal to one of the thresholds, that is, BF10(N) = A
or BF10(N) = B, the Bayesian error probabilities given 1-to-1
prior odds (see Equation 7) were identical to the frequentist
error probabilities for symmetric thresholds (see Equation 16;
Berger et al., 1999). Because the observed Bayes factor will
typically exceed the threshold at termination (i.e., overshoot-
ing), the frequentist error probabilities of the procedure thus
represent upper bounds of the Bayesian error rates. Conse-
quently, from a Bayesian perspective, Equations 14 and 15 are
useful tools to evaluate the properties of a sequential Bayesian t
test with given threshold values. Moreover, this relationship
between frequentist and Bayesian error probabilities also holds
for a Waldian t test with A and B chosen to satisfy certain error
probabilities from a frequentist perspective. This further high-
lights the usefulness of Waldian t tests as a tool that combines
frequentist and Bayesian desiderata.

Table 1
Association of Thresholds and Nominal Error Probabilities for Sequential Bayesian t Tests

H1 Threshold H0 Threshold

A J K&R B J K&R a b

10 strong moderate 10– 1 strong moderate 0.091 0.091
20 strong strong 10– 1 strong moderate 0.045 0.095
30 very strong strong 10– 1 strong moderate 0.030 0.097
150 very strong very strong 10– 1 strong moderate 0.006 0.099
10 strong moderate 20– 1 strong strong 0.095 0.045
20 strong strong 20– 1 strong strong 0.048 0.048
30 very strong strong 20– 1 strong strong 0.032 0.048
150 very strong very strong 20– 1 strong strong 0.006 0.050
10 strong moderate 30– 1 very strong strong 0.097 0.030
20 strong strong 30– 1 very strong strong 0.048 0.032
30 very strong strong 30– 1 very strong strong 0.032 0.032
150 very strong very strong 30– 1 very strong strong 0.006 0.033
10 strong moderate 150– 1 very strong very strong 0.099 0.006
20 strong strong 150– 1 very strong very strong 0.050 0.006
30 very strong strong 150– 1 very strong very strong 0.033 0.006
150 very strong very strong 150– 1 very strong very strong 0.007 0.007

Note. A, B = upper and lower threshold of the sequential procedure, respectively; J = interpretation of thresholds according to Jeffreys (1961); K&R =
interpretation of thresholds according to Kass and Raftery (1995); a, b = nominal Type I and Type II error probabilities associated with threshold values A
and B; note that these values denote properties of the sequential procedure and do not consider effects of overshooting.
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Waldian t Tests in Practice

To facilitate the application of Waldian t tests for substantive
researchers, we created an easy-to-use R Shiny web application.
The app provides an intuitive graphical user interface and does not
require any prior knowledge of R. It can be accessed via https://
martinschnuerch.shinyapps.io/Waldian-t-Tests/, and the underly-
ing source code is available at https://github.com/mschnuerch/
waldian-t-tests.
Before data collection, the app may be used to compute the

threshold values for the Waldian t test. This computation only
requires the user to provide the desired error probabilities a and b.
Alternatively, the threshold values A and B can be entered to cal-
culate the associated error probabilities.
During data collection, users can repeatedly calculate and moni-

tor the Bayes factor with the app. Before analysis, the prior on d
has to be specified. The app currently supports the specification of
a scaled t distribution (which includes a scaled Cauchy as a special
case), the normal moment prior proposed by Pramanik and John-
son (in press), and a normal distribution. To calculate the Bayes
factor at a given stage (that is, BF10(N)), the user must provide the
observed t value as well as the group sample sizes nx and ny.
Instead of the t value, the app also accepts group means and stand-
ard deviations. When all information has been entered, the app
returns the calculated Bayes factor as well as the decision to either
terminate and accept one of the hypotheses or to continue sampling.
To summarize, Waldian t tests are easily applied in practice.

With our Shiny app, researchers can define threshold values (or
error probabilities associated with fixed thresholds) and calculate
Bayes factors for one-sample, two-sample, and paired Waldian t
tests. The app requires only the observed t values (or group means
and standard deviations). This input is easily obtained with SPSS
or any freely available software such as R or JASP. When using
Waldian t tests in practice, it is important to keep in mind that
they—like any other sound test procedure—require specification
of the models corresponding to H0 and H1 as well the parame-
ters of the sequential procedure (i.e., a and b) before data collec-
tion has started. Changing the models and/or parameters during
the sampling process may introduce severe biases with unknown
consequences and should thus be avoided by any means. One
effective way to avoid biases is by committing to the rule that
the test procedure (i.e., the prior distributions and error probabil-
ities/threshold values) is preregistered before data collection has
started (Wagenmakers et al., 2012).

Discussion

Bayesian hypothesis testing methods have become considerably
popular among psychologists, fostered by advances in computa-
tional methods and persistent critiques of classical, frequentist
NHST approaches to statistical inference (Heck et al., in press;
Tendeiro & Kiers, 2019). One influential milestone in this process
was the development of Bayesian solutions for one of the most fre-
quent hypothesis testing scenarios, that is, Bayesian t tests (Jef-
freys, 1948, 1961; see also Gönen et al., 2005; Gronau et al.,
2020; Rouder et al., 2009, for recent efforts to extend and promote
these tests). Bayesian t tests possess a number of attractive fea-
tures. Most importantly, they allow analysts to quantify evidence

in favor of the null hypothesis (Gallistel, 2009) and can be applied
sequentially during the sampling process.

Notwithstanding these favorable features, standard Bayesian t
tests do not provide a natural basis for controlling error probabil-
ities. Many research contexts, however, compel researchers to
choose a specific course of action based upon whether one accepts
or rejects the null hypothesis (Lakens, 2021). Think of a clinical
psychologist, for example, who has to decide whether or not to
implement a new therapy. This decision depends on whether or
not the hypothesis is accepted that the new therapy is better than
the old one. Similarly, experimental psychologists might conduct a
pilot study to test a specific hypothesis and decide to continue this
line of research depending on accepting or rejecting the hypothesis.

A decision to accept or reject a hypothesis can always be wrong,
and for a single instance there is no way to tell with absolute cer-
tainty that no mistake has been made. From the perspective of cu-
mulative science, however, it is crucial that the overall proportion
of erroneous decisions is sufficiently low (Lakatos, 1978; Neyman,
1977). Good frequentist properties raise confidence in the result of
statistical tests (Sanborn et al., 2014). Specifically, they indicate
how severely (i.e., how critically) a hypothesis has been tested
(Mayo & Spanos, 2006; Westermann & Hager, 1986). Therefore,
we believe that these properties should be considered and con-
trolled also in the context of Bayesian t tests, at least in situations
that compel the analyst to take a certain course of action. The issue
has been addressed before and different procedures have been pro-
posed to control error probabilities in the context of Bayesian t
tests (e.g., Berger et al., 1999, 1994; Gu et al., 2016; Schönbrodt
& Wagenmakers, 2018; Stefan et al., 2022). With this article, we
complement these suggestions: The Waldian t test is a straightfor-
ward unification of Bayesian t tests with sequential probability ra-
tio tests. It allows for simple and efficient control of frequentist
error probabilities while preserving the prior structure of the
Bayesian test. Moreover, in this context, the frequentist error prob-
abilities serve as upper bounds for the Bayesian error probabilities
at the point of termination. Thus, Waldian t tests satisfy both fre-
quentist and Bayesian desiderata by combining their respective
advantages.

Limitations

Statistical procedures are tools suited for different situations
with different advantages and limitations. There is no magic tool
that fits all purposes. Waldian t tests are no exception. We want to
address some of their limitations here.

Waldian t tests inherit the SPRT’s procedural assumption that
sampling can be continued until a decision threshold is reached.
This assumption is shared among nontruncated sequential tests
and it is important in the derivation of their long-run properties.
Although such sequential procedures are much more efficient on
average than procedures based on fixed samples, there is no guar-
antee that the test will terminate at or before reaching a certain
sample size (Schnuerch & Erdfelder, 2020; Schönbrodt et al.,
2017). Concluding from simulations, the risk is small that the
required sample size becomes unfeasibly large. Nevertheless, this
feature of Waldian t tests may limit their applicability to scenarios
in which the specification of a definite upper bound to the sample
size beforehand is not pivotal.
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If a definite upper bound to the sample size is mandatory, a
standard Neyman-Pearson test based on a fixed sample size
derived from an a priori power analysis might be more appropri-
ate. Alternatively, one could use a sequential design with some
maximum sample size, for example, group sequential designs
(Lakens, 2014) or the independent segments procedure (Miller &
Ulrich, 2020; see also Erdfelder & Schnuerch, 2021). To allow for
proper error control, however, these approaches require that both
the null and the alternative hypothesis be specified as simple point
hypotheses. If the analyst’s expectation is best represented by a
prior distribution, a Bayesian t test is more appropriate. In this
case, the necessary fixed sample size and critical value such that
the procedure satisfies certain error rates may be determined by a
simulation-based design analysis (Stefan et al., 2019). Alterna-
tively, the recently proposed modified sequential probability ratio
test (Pramanik et al., 2021) allows for a sequential test of a fixed
null hypothesis against a default alternative hypothesis based on
uniformly most powerful Bayesian tests (Johnson, 2013) with a
predefined maximum sample size. This modified sequential test
represents an efficient hypothesis testing procedure when the alter-
native cannot be specified explicitly and when an upper bound to
the sample size is required.
Another important point to keep in mind is that the specified

Type II error probability b in a Waldian t test is an expected prob-
ability. As we illustrated in our simulations (see Figure 3), the
error probability for a specific parameter value, b(d), will vary
considerably across the parameter space X1 and thus, deviate from
this expectation in general. As we argue above, Waldian t tests
will nevertheless provide reasonable frequentist error probability
control if the prior represents meaningful properties of d (e.g., a
random effect).
A different approach is to construct a test of the smallest effect

size of interest. In this case, one would specify a theoretically or prac-
tically meaningful effect size dmin 2 X1 for which the requirement is
imposed that the test has error probability less or equal to b for any d
greater than or equal to dmin. A Bayesian (orWaldian) t test would no
longer be appropriate for this scenario. However, a different sequen-
tial procedure such as Hajnal’s t test (Schnuerch & Erdfelder, 2020)
or a fixed-sample Neyman-Pearson t test based on the point alterna-
tive hypothesisH1: d = dmin will satisfy the error probability require-
ment, that is, Pðreject H1; dÞ# b; 8d 2 fd : d$ dming.

Conclusion

Different research questions require different statistical answers.
While some questions may be appropriately addressed by continu-
ous measures of statistical evidence, others require binary deci-
sions with controlled error probabilities. With Waldian t tests, we
promote a procedure that combines the advantages of Bayesian t
tests, which aim at quantifying evidence, with that of sequential
probability ratio tests, which provide an efficient means to control
error probabilities. What is more, the basic idea underlying Wal-
dian t test can of course be generalized to Bayes factors outside
the t test framework, such as Bayes factors aiming at model selec-
tion or assessing order constraints (for a review of applications,
see Heck et al., in press). This, however, exceeds the scope of this
article and needs to be worked out in more detail in the future.
It is not our intention to suggest that psychologists should aban-

don hypothesis testing based on Bayesian tests, Neyman-Pearson

tests, NHST, or other extant procedures. Instead, we endorse the
mindful selection of statistical tools suited for the research ques-
tion at hand and the given practical constraints (e.g., the costs of
data collection). We believe that for many basic and applied psy-
chological research questions, Waldian t tests will constitute a val-
uable addition to the set of available tools.
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Table A1
Average Sample Size (and Quantiles) of Simulated Waldian t Tests

a b True state Informed t test Default t test NAP t test

H0 699 (430, 708, 1,847) 3,675 (2,434, 3,496, 8,949) 954 (694, 974, 2,135)
0.05 H1 568 (316, 566, 1,619) 1,200 (102, 574, 5,047) 723 (416, 812, 2,325)

H0 326 (198, 352, 926) 911 (602, 856, 2,151) 544 (402, 560, 1,192)
0.005 0.10 H1 427 (271, 490, 1,187) 565 (108, 518, 2,307) 593 (380, 680, 1,739)

H0 608 (382, 614, 1,568) 3,178 (2,194, 3,121, 7,649) 852 (652, 891, 1,845)
0.05 H1 313 (166, 331, 998) 810 (64, 380, 3,765) 445 (238, 548, 1,463)

H0 269 (180, 310, 733) 798 (542, 764, 1,887) 491 (376, 512, 1,080)
0.050 0.10 H1 236 (150, 272, 687) 329 (60, 368, 1,405) 352 (238, 422, 1,016)

Note. a = nominal Type I error probability; b = nominal Type II error probability; True state = statistical model underlying data generation; Informed t
test: t prior under the alternative (ld = .350, c = .102, j = 3); Default t test: Scaled Cauchy prior under the alternative (ld ¼ 0; c ¼ 1=

ffiffiffi
2

p
, j = 1); NAP t

test: Nonlocal alternative prior (ld ¼ 0; r2 ¼ 1; s2 ¼ 0:045). Values in parentheses represent the 50th, 75th, and 95th quantile, respectively.
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