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Abstract
ANOVA—the workhorse of experimental psychology—seems well understood in that behavioral sciences have agreed-
upon contrasts and reporting conventions. Yet, we argue this consensus hides considerable flaws in common ANOVA
procedures, and these flaws become especially salient in the within-subject and mixed-model cases. The main thesis is
that these flaws are in model specification. The specifications underlying common use are deficient from a substantive
perspective, that is, they do not match reality in behavioral experiments. The problem, in particular, is that specifications
rely on coincidental rather than robust statements about reality. We provide specifications that avoid making arguments
based on coincidences, and note these Bayes factor model comparisons among these specifications are already convenient
in the BayesFactor package. Finally, we argue that model specification necessarily and critically reflects substantive
concerns, and, consequently, is ultimately the responsibility of substantive researchers. Source code for this project is at
github/PerceptionAndCognitionLab/stat aov2.

Keywords Mixed models · Bayes factors · ANOVA

Introduction

Experimental psychologists love ANOVA. We love to use it
and to teach it. We love multiway interactions. We love the
compact reporting style of results. We even love the quirky
calculus of partitioning the sum of squares and counting
degrees of freedom.

Even though most experimental psychologists love
ANOVA, they would have a hard time specifying the
statistical models that underlie it. The love we feel for
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ANOVA comes from our familiarity with ANOVA as a
procedure, and these procedures include the computation of
F -statistics, degrees of freedom, and p-values. Statistical
models, including those underlying ANOVA procedures,
are the formal device used for inference. A model links
substantive statements to data (Rouder et al. 2016a,
b, 2017). To perform inference, one makes principled
statements about the appropriateness of certain models or
certain parameter values conditional on data.

ANOVA in the common usage refers both to a set
of procedures to partition variances from experimental
treatments and a set of linear mixed models that specifies
how treatments and participants combine to provide
probability distributions over data. Can the procedures
of ANOVA be profitably used without consideration
of linear mixed models (Wilk & Kempthorne, 1956)?
Gigerenzer (1998) strikes us as especially relevant here.
He distinguishes between statistical thinking and using
statistics as ritual. When ANOVA is used as a procedure
that produces p-values as outputs, Gigerenzer claims that
the user may do so without any statistical thinking at all.
Building on Gigerenzer, the reliance on the procedural
view of ANOVA does not inform us whether the implied
underlying models are appropriate for the experimental
design at hand (Wilk & Kempthorne, 1956). In this
special issue, we see that what is the appropriate model
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for experiments, especially for those with within-subject
designs, is indeed a contentious issue. We are grateful
for van Doorn et al. (2021) for laying out the model-
specification issues clearly. Here, we address the issues in
the context of ANOVA.

The main thesis of this paper is that the conventional
models underlying ANOVA procedures are deficient from
a substantive perspective. These models assert situations
that are implausible and untenable inasmuch as they rely
on mere coincidences that cannot hold generally. The key
here is that the arguments about untenability are based
in the substance of psychology as a science rather than
based in the mathematics or statistics. In this regard, we
appeal to your sensibilities as a psychological scientist
rather than a methodologist. The claim developed herein
is that when ANOVA is implemented with substantively
reasonable models, many of the conventional ANOVA
procedures seem ill-advised and many of the conventional
ANOVA intuitions seem unwise. Perhaps the consequences
are most clear in mixed models, but they hold across
ANOVA defined generally.

ANOVA Yesterday and Today

Before going on, a bit of history is helpful. ANOVA was
invented in the 1920s by Ronald Fisher who worked at a
British agricultural research station (e.g., Fisher 1925). The
genius of ANOVA was the partition of the sum-of-squares
into interpretable, orthogonal units. And this partition could
be made as a data-analytic procedure without much thought
about the underlying statistical models, much as principle
components analysis (PCA) is used today. One of the
slickest innovations with ANOVA is the treatment of within-
subject (repeated measures) designs. In the procedural view,
accounting for random-subject effects is straightforward.
All one needs to do is adjust the denominator of the F -test—
use mean-square interaction terms rather than mean-square
residual error terms. Yet, what exactly are random-subject
effects? In classical statistics, there are two types of objects:
data and parameters. Data are observed and governed by
probability distributions that may depend on parameters.
Parameters are not observed and are not distributed. They
are fixed unknowns. Random effects are neither parameters
nor data—they are distributed yet not observed.

The procedural view of ANOVA stands in contrast to
two alternative orientations in the field. The first is the
latent variable tradition, and we include in this tradition
mixed models, hierarchical models, and structural equation
models (Baayen et al., 2002; Barr et al., 2013; Bollen,
1989). Latent variables are similar to data in that they
are governed by distributions, but unlike data, they are
not observed. Random effects are then modeled as latent
variables. The second tradition is the Bayesian tradition.

In the Bayesian tradition, both parameters and data are
governed by distributions. The only difference between
the two is that data are observed where parameters are
not. There is no need for a third object in the Bayesian
tradition (Efron & Morris, 1977). For our purposes here,
we focus on the commonality of these two traditions, that
the specification of statistical models guides analysis. This
emphasis on specification stands in contrast to procedural
ANOVA.

TheModels of ANOVA

In this section, we provide the models that underlie
ANOVA; in the next section, we provide a critique of them
on substantive grounds. Consider for now a simple 2 × 2
between-subject design with Factors of A and B. The most
general model for this case is given as:

Yijk = μ + αi + βj + γij + εijk, (1)

where i indexes the level of Factor A, j indexes the level of
Factor B, and k indexes replicates. The noise terms, εijk , are
mutually independent, zero-centered normal deviates with
a variance of σ 2. When there are two levels of each factor,
there is a single grand mean parameter, μ, two main-effect
parameters for Factor A, αi , two main-effect parameters for
Factor B, βj , and four interaction parameters γij . The total
number of parameters that determine the cell means are 9,
which is problematic as there are only 4 cell means in a
2×2 design. This problem is well known, and consequently,
parameters are constrained in one of two ways, which are
known as fixed effects or random effects. For fixed effects,
the constraint is to specify that the sum of certain parameters
must be zero. In the 2 × 2 case, the specification is that
α1 + α2 = 0, β1 + β2 = 0, γ11 + γ12 = 0, γ21 + γ22 = 0,
and γ11 + γ21 = 0. With these sums-to-zero constraints,
there are four free parameters: μ, α1, β1, and γ11, which
perfectly matches the number of free cell means, again, 4.
The random effects constraint is a bit more complex, and we
cover it subsequently.

Figure 1 shows the four models conventionally used in
ANOVA. The notation here is a modified form of Wilkinson
notation (Wilkinson & Rogers, 1973), which is a popular
means of specifying models in software. The model at the
top, specified by Y∼A+B+A:B is the full model of Eq. 1
in Wilkinson notation. The convention is that the grand-
mean is present, as are the zero-centered noise terms and
the sums-to-zero constraints. The three terms respectively
correspond to the main effects of Factors A and B and
their interaction. Shown also are three submodels formed
by specifying further constraints. Take the model directly
underneath the full model, Y∼A+B. This is the model with
a main effect of Factor A, a main effect of Factor B, and
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Y~A+B+A:B

Y~A+A:B Y~A+B Y~B+A:B

Fig. 1 Model comparisons in conventional ANOVA

no interaction. This model is formed by setting interaction
terms γij = 0. Likewise, models without Factor A are
formed by setting αi = 0 and models without Factor B are
formed by setting βj = 0.

Conventional ANOVA testing is a top-down affair (Hays,
1994). There are three lines in Fig. 1 with F s on them. These
indicate the models being compared with the respective
F test. Consider FA (far right in the figure). If αi = 0
(implying Y∼B+A:B), then the expected value of FA =
1 and the distribution of FA is the usual F -distribution
with the appropriate degrees of freedom. If αi �= 0, then
the expected value of FA > 1 and unexpectedly large F
statistics may be observed, depending on the size of αi and
the sample sizes. In this sense, FA is the comparison of a
null model Y∼B+A:B against the alternative Y∼A+B+A:B,
that is, a test of the main effect of Factor A.

How do the three ANOVA tests map into models?
There are no explicit relations in some sense, but it is our
observation that the logic in Table 1 is followed. The values
of each test are considered positive (significant) or negative
(insignificant). These are combined in the straightforward
way. For example, if all three tests are negative, as indicated
in the top row, then none of the effects are indicated. In this
case, the data are not dependent on Factor A, Factor B, or
their interaction, and the model Yijk = μ+εijk is indicated.
The shorthand for this model, Y∼., is entered into the first
row. Likewise, if just the main effect of Factor A is positive,
then only Factor A is entered into the model. As shown,
there are 8 possible combinations of the 3 tests, and each
corresponds to a particular model.

Table 1 Logic of drawing conclusions from F-tests

FA FB FAB Conclusion

− − − Y∼.

+ − − Y∼A

− + − Y∼B

− − + Y∼A:B

+ + − Y∼A+B

+ − + Y∼A+A:B

− + + Y∼B+A:B

+ + + Y∼A+B+A:B

Avoiding Coincidences

One key to good inference is to have models that faithfully
translate theoretical constraints into formal or statistical
constraints. When a model does this well, we will say
it is well specified. To the degree a model does not
capture the theoretical constraints, we will say it is
poorly specified. This well-specified vs. poorly specified
distinction is a substantive concern because it centers
theoretical constraints. The question then is whether the
three models in Fig. 1 are well specified?

There is a tradition in statistics in which a certain class of
ANOVA models are considered poorly specified. This class
is comprised of models that exclude main effects but include
their interactions (Langsrud, 2003; Nelder, 1994; Venables,
2000; Yates, 1935). In Fig. 1, these poorly specified models
are Y∼A+A:B and Y∼B+A:B. In each of these, there is an
interaction between Factor A and Factor B, but one of the
constituent main effects is missing.

To see why many statisticians find Y∼A+A:B and
Y∼B+A:B poorly specified, consider the example in Fig. 2
which is from Rouder et al. (2016a). Here, a food scientist
is assessing how much money consumers might pay for
a quart of ice cream as a function of the fat and sugar
content. The data in panel A show a perfect crossover. Such
a pattern corresponds to a positive result on an interaction
and a negative result on main effects. But is the lack of
main effects a coincidence rather than a general state of the
environment?

Figure 2B shows how price truly varies as a function
of sugar and fat. We see here that the perfect crossover
results from picking exactly balanced values in the 2 × 2
factorial design. Panels C and D show the effect of picking a
different value for the high-sugar-concentration level. Now,
main effects are observable as well.

We think the above example is typical. It seems
implausible in most research that researchers can pick such
exactly balanced levels in their design. Assuredly, from time
to time, researchers will observe data that exhibit a near
perfect crossover. And while the data may seemingly lack
main effects, in most cases these main effects must be there
lest there be exact perfectly balanced levels. The observed
lack of main effects in most cases then is a coincidental
property rather than a deep structural invariance.

How shall we take into account this coincidental
property? The solution is to include main effects whenever
interactions are included (Langsrud, 2003; Nelder, 1994;
Venables, 2000). Figure 3 shows the eight possible models
from Table 1. Of these eight, three are poorly specified and
five are well specified (Langsrud, 2003).

The exclusion of poorly specified models in Fig. 3
changes ANOVA. Because the usual F -statistics are
contrasts where one model may be poorly specified, these
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Fig. 2 Lack of main effects
results from a coincidence.
A–B. The perfect cross-over
pattern results from picking
exactly perfect levels of fat and
sugar content. C–D. Even if one
level is changed, then main
effects appear
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F -tests are no longer appropriate. One approach is to
devise new F -tests that do not allow for main effects
without interactions. The new F -test consists of different
formulas that are known as Type II sum-of-squares (Yates,
1935). Langsrud (2003) provides a particularly accessible
discussion of the models and how they motivate the
Type II sum-of-squares formulations. Nonetheless, it is
difficult to find Type II sums-of-squares implemented in
software.

We think that analysts who wish to exclude poorly
specified models will find model comparison relatively
straightforward and convenient. With model comparison,
one may use conventional comparison techniques and sim-
ply exclude the poorly specified models. The well-specified
models in Fig. 3 may be compared by popular meth-
ods including Akaike Information Criterion (AIC, Akaike
1974), Bayesian Information Criterion (BIC, Schwarz

1978), Bayes factors (Jeffreys, 1961), and leave-one-out
cross validation (Vehtari et al., 2017).

How does excluding poorly specified models change
inference? Without poorly specified models, larger effects
are needed to state evidence for interactions. Because inter-
actions imply main effects, models containing interactions
are necessarily more complex than those with just main
effects. Figure 4 and Table 2 tell the story. The figure pro-
vides an example of data that have been engineered to have
conventional F statistics for main effects at F(1, 19) = 1.0
and for the interaction at F(1, 19) = 4.02.1 Note that the

1Data come from a 2-by-2 between-subject design with 20 replicates
per cell. The sample means were set to 656.4, 721.8, 721.8, and
700 for the low-low, low-high, high-low, and high-high conditions,
respectively. MSE was 9454, and for this MSE, F -statistics were
approximately 1.0, 1.0, and 4.0 for the main effects of A and B, and
the interactions between them, respectively.
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Y~A+B+A:B

Y~A+A:B Y~A+B Y~B+A:B

Y~A Y~A:B Y~B

Y~.

Fig. 3 The eight models applicable to a 2-way design. There are
five well-specified models (light shadeing) and three poorly specified
models (dark shading). Inadmissable models have interactions without
corresponding main effects

sample main effects are not exactly zero, but are typical of
null effects; the interaction is significant at the p < .05
level. And so by conventional F -tests with poorly specified
models, we may consider there to be some evidence of an
interaction.

Table 2 shows the effects of including and excluding
poorly specified models for a few popular model compar-
ison statistics. Let us take AIC. To help calibrate AIC, a
good rule of thumb is that AIC scores should exceed 2.0
to claim that one model is preferred to another. In this
case, if we include the poorly specified model Y∼A:B, then
indeed, this interaction model is preferred over all others,
and it is preferred by at least 2 AIC points over models
without an interaction term. The situation changes if we
exclude poorly specified models. Here, the preferred model
is the full model, but it is barely preferred to the null model
where there are no effects at all. Hence, with AIC, exclud-
ing poorly specified models lowers the strength of evidence
from the data to claim an interaction.

AIC is known to favor complexity when compared to
BIC or Bayes factors. The BIC values here are equivocal
between the null and the poorly specified model Y∼A:B.
But when the poorly specified models are excluded, there
is now evidence against the interaction (or any effect).
The same pattern holds for Bayes factors as well. And
just as with AIC, excluding poorly specified models
lowers the strength of evidence from the data for an
interaction.

The take-home here is that of commonality. Regardless
of model selection technique, the exclusion or inclusion of
these poorly specified models is a weighty issue. When
they are included, the claim of an interaction may be
made on smaller effects than when they are excluded.
Given the implausibility of these poorly specified models,
claims of interactions with them should be given careful
scrutiny.
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Fig. 4 Is there an interaction here? The answer depends on the
included models (Table 2)

Coincidences as Substantive Concerns

Should psychologists use models that have interactions but
no main effects? The question is not a statistical one but a
substantive one. It is up to individual substantive researchers
to determine when and whether models are well specified.
In the following, we provide two examples, one in which
models that have interactions without corresponding main
effects should be excluded, and another where perhaps they
may be included.

Example 1 Consider a cognitive-aging memory experiment
where younger and older adults are recalling nouns and
verbs under the hypothesis that verbs may be differentially
difficult to recall for older adults because they are abstract
and require a binding to an object. Because the hypothesis
is a differential effect, the target behavioral signature is an
age-by-part-of-speech interaction. Assume that there will be
an age main effect as it is well established that older adults
have mnemonic difficulties (Salthouse, 1996). The question
is whether we are willing to interpret an age-by-part-of-
speech interaction in the absence of a true part-of-speech
main effect. Such an interaction without a part-of-speech

Table 2 Evidence for models from data in Fig. 4

Model AIC BIC BF

Well specified

Y∼. 2.021 0 1

Y∼A 3.035 3.395 0.354

Y∼B 3.035 3.395 0.354

Y∼A+B 4.036 6.779 0.121

Y∼A+B+A:B 1.911 7.036 0.188

Poorly specified

Y∼A:B 0 0.361 1.305

Y∼A+A:B 0.962 3.705 0.574

Y∼B+A:B 0.962 3.705 0.574
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main effect implies that the advantage for nouns over verbs
for older adults is perfectly balanced by an equally sized
advantage for verbs over nouns in younger adults. We think
that this balance should it be indicated by conventional
ANOVA is a spurious coincidence. In this case, as a matter
of a substantive importance, we would evidence interactions
against null models that explicitly allow for such main
effects and, accordingly, pay the price in complexity as in
Table 2.

Example 2 Consider a Simon interference task where red
and green boxes are presented as stimuli and the participant
must use their left hand to indicate that the box was red
and their right hand to indicate that the box was green.
In the Simon task, the boxes are presented to the left
and right of fixation, and the main finding is a laterality-
based interference where it takes more time when the side
of stimulus display and correct response are contralateral
than ipsilateral. Consider side-of-presentation as Factor A
(left/right) and the color as Factor B (red/green). The main
result here is an interaction. The main effects of Factor
A and B are whether performance depends on which side
the stimulus is presented on and color. The main question
is whether it is plausible that there is no main effect in
either variable, at least in comparison to the size of the
Simon effect. Is there a plausible invariance of color? We
think given that boxes of both colors are presented well
above threshold, there may be no particular advantage of
red or green. Likewise, is there a plausible invariance for
side of presentation? Given the strong physical symmetry
of humans, a null results here too is plausible. Hence,
there may be theoretical reasons in this example to consider
interactions without main effects.2

Avoiding Coincidental Models in
Within-Subject Designs

Within-subject designs are the workhorse of experimental
psychology. It is easy to understand why—there is great
power in letting each participant serve as their own control.
Variability from participants may be subtracted out, and the
resolution for understanding the structure in data is greatly
increased.

Unfortunately, the concern about coincidences is per-
tinent to within-subjects ANOVA procedures. Consider a
simple Stroop experiment where each participant is shown
a number of congruent and incongruent trials. Psychol-
ogists tend to call this a one-way design with condition
(congruent vs. incongruent) manipulated in a within-subject
manner. In the usual course, there is a single question of

2We thank Patric Bach for this example.

interest, namely, is there a Stroop effect. And psychologists
would answer this question with a paired t-test, or, equiv-
alently, a one-way, within-subjects ANOVA. Statisticians,
however, would consider this a two-way design with par-
ticipants and condition serving as factors. The statisticians’
designation is more helpful for understanding coincidences
in within-subject designs.

A full model for this case looks the same as before:

Yijk = μ + αi + βj + γij + εijk,

where αis are for the main effects of condition; βjs are
the main effects of participants; and γijs are interactions
between participants and conditions. Again, there are more
parameters than cells, so constraint is needed. The usual
sums-to-zero constraint is well suited for the main effect
of conditions, i.e., α1 = −α2. Yet, because participants
are considered as random effects, we may not put a sums-
to-zero constraint on βj . Instead, participant effects are
considered draws from a common parent distribution:

βj ∼ Normal(0, σ 2
β ).

Note that βj may be considered the j th participant’s overall
speed unperturbed by trial noise. There are a few ways
of dealing with interactions, and the most general way is
simply to treat them analogously to main effects:

γij ∼ Normal(0, σ 2
γ ).

Indeed, this model on random interactions is the one
implemented in SAS PROC MIXED.

Bayesian and frequentist models in this case are fairly
similar. Perhaps the main difference is in the treatment of
these random-variable parameters, called latent variables or
random effects. For frequentists, these parameters do not
stand on their own—they are nuisance variables that must be
integrated out. For Bayesians, they do stand on their own—
they are treated identically to other parameters in the model.
In practice, these theoretical differences matter less than one
might think.

Figure 5 shows the eight models. In this case, the
critical substantive question is whether there is a Stroop
effect. The critical parameters are αi , and the question is
whether these are zero. The usual F -test is the contrast
between Y∼A+S+A:S and Y∼S+A:S. The question at
hand is whether the null for this contrast, Y∼S+A:S, is well
specified.

In general, it is not. The explanation of why so is a
bit long, but the payoff is large. For in the end, we argue
that almost all within-subject ANOVAs are poorly specified.
To see why conventional within-subject ANOVA relies on
coincidences, let us consider each individual’s effect. Each
individual’s observed effect is the difference in sample
means: dj = Ȳ2j − Ȳ1j . The paired t-test takes these
as inputs to assess whether the population mean is zero.
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Fig. 5 Eight possible models in a one-way, within-subject setup. The
darkest shade indicates models without a main effect of participants.
We assume participant effect and these models are considered no
further. The middle shade indicates a model inadmissable because
there is an interaction without a corresponding main effects. The line
labeled F indicates the conventional contrast, the lines labeled 1 and
2 are our previous recommendation and our current recommendation,
respectively. The two models we would consider are connected by line
2

We can also define a true individual effect, θj , that is the
limit for each person as the number of trials grows without
bound. Indeed, this true individual effect is a substantively
important construct—it is what we hope to measure free of
trial-by-trial noise (Rouder & Haaf, 2019).

How do these true individual effects map onto substan-
tive psychological processes? If θj is positive, then the
participant has the usual true Stroop effect where congru-
ent items are responded to more quickly than incongruent
ones. If θj is zero, then the participant has no true Stroop
effect. And if θj is negative, then the participant has a Stroop
pathology where responses to incongruent items are truly
faster than those to congruent ones.

We think it is of substantive importance whether θj

is positive, zero, or negative, and moreover, the sign of
θj implies different substantive psychological mechanisms
(Haaf & Rouder, 2019) as follows: Positive effects implicate
the usual cast of theories including that reading is automatic
and generates response competition (Kahneman, 1973). A
zero effect implies a lack of automaticity, and a negative
effect, which is hard to envision, would implicate some
strategic or compensatory processes.

Although θj plays an outsized theoretical role, it is not
a primary parameter in the ANOVA model. Instead, it is
obtained by adding and subtracting parameters: θj = (α2 −
α1) + (γ2j − γ1j ). Placing the random-effect distributional
constraint on the interaction terms γ2j and γ1j reveals that
θj ∼ Normal(α2−α1, 2σ 2

γ ). Figure 6 shows the distribution
of θj under the full model Y∼A+S+A:S. Here, there is an
average Stroop effect of 60 ms, and this mean is α2 − α1,
the condition main effect (denoted A). The variability is the
condition-by-participant interaction, A:S, and the standard
deviation is

√
2σγ . The distribution of θj under the null

Individual's True Effects θ (ms)

−50 0 50 100 150

Y~A+S+A:S

A

A:S

Y~S+A:S

Fig. 6 The distribution of individual true effects under the full model
(solid line, Model Y∼A+S+A:S) and under the null model (dashed
line, Model Y∼A+A:S). The mean of the distribution is the main effect
of condition, and the variability is the interaction with individuals

model Y∼S+A:S is shown as well. Here, it is centered at 0
with the same variability as under the full model.

To gain insight into the substantive meaning of the
null model Y∼S+A:S, let us use stimuli in our Stroop
experiment that are blurred words. The blurred words are
still colored, and the participants’ task is still to name the
color. An example is shown in Fig. 7, and participants
should report the color red. When the word is clear, in this
case the word “BLUE,” the word identity may interfere
with reporting the color. However, as the words are blurred,
word identity may no longer interfere with color naming.
In the limit that the word is unreadable, we expect no
individual to show any Stroop effect whatsoever as fully
blurred congruent items (the word RED displayed in RED)
are indistinguishable from fully blurred incongruent items
(the word BLUE displayed in RED).

The key question is what is an appropriate specification
of individual true effects, θj for this case? Figure 8
shows three different possibilities. The first, in panel A,
corresponds to Haaf and Rouder’s (2017) notion that
everyone has a true Stroop effect in the same (positive)
direction. Accordingly, the effect comes from a common
theoretical mechanism, and all the differences across
participants are in degree rather than in kind (Rouder

Fig. 7 Three hypothetical stimuli in a Stroop task: a clear version,
a somewhat blurred version, and a fully blurred version. The fully
blurred version is an appropriate physical model of the null that there
is no effect of word identity
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Fig. 8 Three models on true
individual effects. A Everybody
has a true Stroop effect in the
usual direction (faster responses
to congruent than incongruent
items), and this effect decreases
with blur. The null model is that
nobody has any true Stroop
effect. BMost people have the
usual Stroop effect, but some
have a true Stroop reversal
(faster responses to congruent
than incongruent items). For all
people, the Stroop effect
decreases in magnitude with
blur. The null model is that
nobody has any true Stroop
effect. C ANOVA model. As the
blur is increased more and more
people switch from true Stroop
effect to a true Stroop reversal.
The null model is that half the
people have a true Stroop effect
and half have a reversal
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Full
 Blur
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C

& Haaf, 2020). As the stimulus becomes blurred, the
distribution is attenuated toward zero. Importantly, in the
unreadable limit, everybody’s true effect is identically zero
as it must be because the word identities are exactly the
same for congruent and incongruent stimuli. Panel B shows
a variant where individuals vary in kind as well as in degree.
Here, when the word is clear, most people have a positive
effect, but a minority have a negative effect. Both these
positive and negative effects, which are driven by word
identity, decrease with increasing blur. In the limit that the
word is unreadable, the effects collapse to zero as they must.

Panel C shows what happens in conventional within-
subjects ANOVA. Accordingly, by blurring the word,
the experimenter has transferred people into different
theoretically meaningful regions. As we increase the blur,
people transfer from the usual Stroop where there is quick
automatic reading to a pathological domain where there is
some compensatory or strategic process. When the word
is unreadable, exactly half the people show the usual
Stroop with fast automatic reading of unreadable words
and half are pathological with a compensatory process
driven by unreadable words. We think these implications are
challenging, and, consequently, model Y∼S+A:S is poorly
specified. In fact, it is outright untenable. Those who use
it have a high bar in justifying it because it makes little
substantive sense.

The above critique also applies to paired t-tests. In a t-
test, we assume a set of data, in this case, observed effects,
dj , are distributed as a normal with unknown mean and
variance, dj ∼ Normal(ν, η2). The test is of the constraint

that ν = 0. We can derive the distribution of these inputs
under the full model:

dj ∼ Normal(α2 − α1, 2σ
2
γ + 2σ 2/K),

where K is the number of replicate observations per person
per condition. The t-test is indeed a test of whether there
is an effect of condition (α2 − α1), but it is against the
noise term with variance 2(σ 2

γ + σ 2/K). While there is
nothing wrong with this term from a mathematical point-
of-view, it is peculiar from a substantive point-of-view.
It is the weighted sum of two different types of noise
with two different meanings. One is the variation from
trial-to-trial which captures cognitive noise internal to the
participant. The other is variability in the true effect across
people, which represents variation between people in the
population. Clearly, the mechanisms that give rise to one
are not the same as the mechanisms that give rise to the
other. It is helpful, therefore, to separate these two noise
sources. This separation is possible when there are multiple
observations per participants per conditions, and, indeed,
separating variance sources is precisely the goal of mixed
modeling.

Main Effects Without Interactions in
Conventional Within-Subject ANOVA

The main thesis here is that models have substantive con-
tent, and that cognitive psychologists should use models
that place substantively reasonable constraints on data. Null
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models underlying ANOVA and paired t-tests in within-
subject designs are, in our opinion, poorly specified. To
that end, we have eliminated Y∼A+A:S from our com-
parison set. In contrast to this comparison, Rouder, Morey
and colleagues (2012, 2017) recommend not specifying
participant-by-condition interactions at all. These authors
test the main effect of A by comparing Y∼A+S to Y∼S
(see line 1 in Fig. 5) And this choice to exclude participant-
by-condition interactions is built into the anovaBF()
function in the BayesFactor package in R. Rouder and
Morey and colleagues made these choices because they wor-
ried about the interpretability of participant-by-treatment
interactions.

Unfortunately, the model Y∼A+S entails a strong
substantive implication that we can no longer defend. In
this model, there are no true individual differences in the
size of the effect. All observed individual differences are
modeled as coming from trial noise. In the limit that each
participant runs more and more trials, their observed effect
converges to the same constant. Hence, this model specifies
an underlying human performance constant, say all people
Stroop at 60 ms. We do not actually think such a constant
exists, and, accordingly, the additive model should not be
considered further. We think there are only two models of
concern here. One is the null where there are no effects at
all, Y∼S, and the other is the full model with main effects
and interactions, Y∼A+S+A:S. And these are the only two
models we would carry in this design. Our comparison of a
null effect is shown with line 2 in Fig. 5.

ExaminingModel Comparisons in
Within-Subjects Designs

For the one-way case, we recommend that researchers
consider models connected by line 2 in Fig. 5. How does this
model-comparison strategy compare to conventional paired
t-tests? To gain insight, we highlight two hypothetical data
sets, uncreatively called Scenario 1 and Scenario 2.

Both Scenario 1 and Scenario 2 are generated from the
full model Y∼A+S+A:S. In each case, there are 50 people
observing 50 trials in each of two conditions. Figure 9 shows
the sample individual effects, di , for the two scenarios (there
is one sample effect per participant).

Scenario 1 is characterized by high true participant
variability and moderate trial-by-trial variability. Data are
generated where each individual’s true effect is drawn
from a distribution with a mean of 20 ms and a standard
deviation of 50 ms, and trial noise had a standard
deviation of 100 ms. As a consequence of the large
standard deviation in individual effects, about 34% of
individuals have a true negative Stroop effect. We worry
here if the mean is useful when a sizable proportion of
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Fig. 9 Model comparisons for two within-subject scenarios. Observed
individual effects for Scenarios 1 and 2. Conventional p-values
indicate an effect in Scenario 2 only

individuals has a true effect in the opposite direction.
Nonetheless, most researchers reflexively use the paired t-
test to assess this mean effect. In this case, the 20 ms
true Stroop effect is not detectable against the combined
trial-by-trial variability and the variability across individuals
(p ≈ .16).

Scenario 2, in contrast, is characterized by low true
participant variability and high trial-by-trial variability. Data
are generated where each individual’s true effect is drawn
from a distribution with a mean of 30 ms and a standard
deviation of 20 ms, and trial noise had a standard deviation
of 200 ms. As a consequence only about 7% people have
true negative Stroop effects. Here, it makes sense to ask
about the mean effect across people because it characterizes
the qualitative direction of most of the participants (Haaf
& Rouder, 2017). Without the substantial variability across
individuals, the 30 ms true Stroop effect is easily detectable
by a paired t-test (p < .0005).

The model comparison results for Scenario 1 are shown
in Table 3. The Bayes factors are relative to Y∼S, which
serves as the null. As can be seen, the well-specified effects
model, Y∼A+S+A:S, is vastly preferred over the well-
specified null by Bayes factors over 10100-to-1. And what
we can conclude is that Factor A has an effect. Yet, if we
used the poorly specified null model, we would have found
the reverse! The poorly specified null model, Y∼S+A:S,
has a larger Bayes factor than the corresponding effect
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Table 3 Model comparisons for Scenarios 1 and 2

Model Denotes Specification Bayes factor

Scenario 1

Y∼S Null Well 1.0e+00

Y∼S+AS Null Poor 7.6e+120

Y∼S+A Effect Poor 3.1e+04

Y∼S+A+AS Effect Well 2.5e+120

Scenario 2

Y∼S Null Well 1.0e+00

Y∼S+AS Null Poor 6.3e-01

Y∼S+A Effect Poor 6.3e+02

Y∼S+A+AS Effect Well 2.2e+00

Scenario 2 w/ fine-grain specifications

Y∼S Null Well 1.0e+00

Y∼S+AS Null Poor 4.2e+01

Y∼S+A Effect Poor 6.4e+02

Y∼S+A+AS Effect Well 1.0e+03

model, Y∼A+S+A:S. Indeed, we see here the result with
the poorly specified null mimic the t-test result, that is,
the true effect of A is difficult to detect against the large
variability of A:S. Note that the random-effects models
are appropriately sorting out the two different types of
variability from trials and from people. The only models
that can account for both trial noise and a large degree
of true individual differences are those with the A:S
interaction, and that term is driving the large Bayes factor
values.

The comparison of the well-specified models has what
van Doorn et al. (2021) consider to be a limitation: it
does not distinguish between what they call the fixed
and the random effect. Though we do not prefer the
terminology, the point holds. The well-specified effect
model is Y∼A+S+A:S, and its wild superiority of Y∼S
is clearly being driven by the detection of the large
interaction effect, A:S, against the trial noise. Yet, the
Bayes factor alone does not tell you this, and without further
consideration, one could not tell if the large Bayes factor
was driven by A or A:S. In our view, however, this is more
a feature than a limitation.

Table 3 shows the Bayes factors for Scenario 2. Here,
according to a paired t-test, the 30 ms true effect is quite
detectable. Yet, the winning model, Y∼S+A, is poorly
specified inasmuch as we may not believe there is a constant
Stroop effect across all people. Once we pay the price for the
interaction, the Bayes factor for the effect, in this case for
the comparison between Y∼A+S+A:S and Y∼S, is 2.20,
which is quite small. Why? Because we had to pay the price
of the interaction, the effect is barely noticeable. We will
adjust the prices we are willing to pay with fine-grained
model specifications, next.

Fine-Grained Specification Through Prior
Settings

In Bayesian contexts, priors are placed on parameters.
Often, we let default procedures and default settings do the
fine-grained specification work for us. It is a practice that
should not be taken lightly; the fine-grained specifications
are still part of model specification, and they still are the
responsibility of the substantive scientist.

In the previous example with the Stroop effect, we
computed Bayes factors with default settings. These are not
the best choice for this context from a substantive point of
view. We used the setup from Rouder et al. (2012), which
is an extension of Jeffreys (1961) and Zellner and Siow
(1980). We have called this the JZS setup, and the critical
property is that priors are placed on effect sizes rather than
effects. Effect sizes are standardized by the trial-by-trial
variability and have no units. We need to choose a scale or
range of these effect sizes under the models.

There are two critical scale settings in the effects
model Y∼A+S+A:S that affect the Bayes factor model
comparisons. One is for A and the other is for A:S.
We can set these as follows using back-of-the-envelope
calculations: In a typical priming experiment, response
times average about 650 ms and have standard deviations of
about 200 ms for repeated trials. Let us say a typical Stroop
effect is about 50 ms, or 25% the trial-by-trial standard
deviation. The next setting is on A:S, the interaction. How
variable do we believe people are in true value? We tend
to not see evidence for truly reversed Stroop effects, and
this constraint also limits the size of the interaction. A
reasonable expectation might be 20 ms of variation, or about
10% of the trial noise.

In the previous applications—with default settings—the
scale is set to 1.0.3 That is, we expected a 200 ms true
Stroop effect that had a standard deviation of 200 ms across
individuals. The setting of 1.0 for Factor A is not great; but
the one for the interaction A:S is way off the mark. When
we enter new values of .25 for A and .1 for A:S, the Bayes
factors look quite a bit different as shown in Table 3. Here,
because the range of possible interactions is restricted, its
flexibility is diminished as is the cost of carrying the A:S
term. With this more realistic specification, it is clear that
there is an effect of Factor A in Scenario 2.

We emphasize here that these fine-tuned settings come
from substantive considerations and reflect the expert
judgment of substantive scientists. In practice, it is common
to set a range of reasonable expectations, say that the effect

3The scale is the scale of the prior distribution in σ 2
β /σ 2. In the JZS

setup, this prior is a scaled inverse-chi-square distribution with one
degree-of-freedom.
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might be as small as 5% of the trial noise or as large as
20% of trial noise, and explore the sensitivity of inference
to this range. If the inference is materially affected across
a substantively-reasonable range of prior settings, then the
data may not have the resolution to adjudicate the question
at hand.

Fine-grained model specification and analysis is well
supported in the BayesFactor package for R (Morey
& Rouder, 2015). The key command is lmBF(), which
takes among other arguments the model formula in
the above Wilkinson notation. One also has to indicate
which factors should be treated as fixed and random,
and provide scales for each. Here is an example of the
syntax: lmBF(formula = Y ∼ A + S + A:S,
whichRandom = "S", rscaleEffects = c(A
= .25, S = 1, AS = .10)).

Example: the Truth Effect

In this section, we work through a recent application in
the literature. The paradigm for this example is known
as the repetition-induced truth effect. The truth effect
describes the phenomenon that people rate information that
they encounter repeatedly as more likely true than novel
information. To explore the effect, participants are presented
with a number of trivia statements and asked to rate them
for interest or sort them into categories. The statements are
relatively innocuous, and half of them are true and half are
false (e.g., A newborn panda is smaller than a mouse, which
is true). After a retention interval (ranging from a couple
of minutes to several days), participants are again presented
with statements. This time, however, they rate how likely it
is that the statements are true. Of the rated statements, half
were already presented in the first phase and half are novel.
The robust finding is that those statements that have been
presented before are rated as more truthful in the truth-rating
phase than novel statements, irrespective of their factual
truth (Dechene et al., 2010).

Does warning people about the truth effect help them
avoid it? Nadarevic and Aßfalg (2017) studied this question
by manipulating whether participants were warned or not
in a between-subjects manner. Other factors, the truth
of the statements and whether a statement was repeated,
were manipulated in a within-subjects manner. Hence, from
a classical point of view, this is a mixed three factor
model. When we add in participants as an additional
factor, the design is a four-factor model, and a reflexive
analysis would yield tests of four main-effect tests, six
two-way interactions, four three-way interactions, and a
four-way interaction. We will be far more selective and
let substantive concerns guide our model comparison
strategy.

Model Specification

a. A null model is given by Y∼S+T, where S is the
effect of the participant and T the effect of whether the
statement is true. We assume these factors are always
in play—participants will vary and true statements are
more likely to be endorsed as true than false ones.

b. A repetition-effect model is given by Y∼S+T+R+R:S,
where R denotes whether a statement is repeated
or novel and R:S is the participant-by-repetition
interaction. Note that we do not bother with repetition-
by-truth interactions because this interaction is not
particularly germane to our question.

c. A warning-effect model is given by Y∼S+T+W, where
W denotes whether participants have been warned
or not. There is no interaction between participants
and the warning because W was manipulated between
participants.

d. An additive model with both a warning effect and
repetition effects is given by Y∼S+T+R+R:S+W. This
model is a sophisticated null model from a substantive
point of view. It states that warnings do affect truth
values, but do so the same for repeated and not-repeated
items. Hence, the warning is a baseline effect—making
endorsements of truth less likely in this case regardless
of whether the item was repeated or not.

e. A full model with interactions between
the warning and repetition is given by
Y∼S+T+R+R:S+W+R:W+R:W:S. This is the critical
effects model from a substantive point of view as the
warning should attenuate the usually increased truth
ratings in the repeated conditions only.

Fine-Grained Specification

Before implementing these models, we need to choose prior
settings. In this case, critical settings are on factors not in
common with all models: R, R:S, W, R:W, and R:W:S.
Here is our thought-process for doing so: In Nadarevic and
Aßfalg (2017), the truth of a statement was rated on a six-
point scale from 1 (definitely false) to 6 (definitely true). We
started with asking about noise across repeated trials. If the
same participant rated the same item in the same condition,
without memory of the first rating, the standard deviation
might be 1/4 of the full scale. It is against the 1/4-scale
standard, or 1.5 Likert rating points, that we considered the
sizes of effects. Repetition effects tend to be about 1/8 the
scale, or .75 Likert rating points. This yields an effect size of
.75/1.5 = .5. We used the same value for a possible warning
effect. For the two-way interaction, R:W, R:S and W:S, we
used effect sizes of .3 as the interactions are likely smaller
than the main effects. Finally, we attenuated the three-way
interaction with an effect size of .15.
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Analysis

Model comparison results for the models as specified above
in light of Nadarevic and Aßfalg’s (2017, Experiment
2) data are shown in Table 4. The best model is the
additive model, Y∼S+T+R+R:S+W, and the remaining
Bayes factors show how much worse the other models
account for the data. The worst performing models do not
include the covariates R and S:R, and so it is obvious
that repetitions do affect the truth ratings and do so with
individual variability. There is modest evidence that truth
judgments are attenuated by warnings as removing this
factor lowers the Bayes factor by a bit more than 3-to-
1. Most importantly, there is evidence against including
repetition-by-warning interactions. Such a result indicates
that warning people about the repetition truth affect does not
differentially affect truth judgments for repeated items. Our
results contradict the conventional analysis in Nadarevic and
Aßfalg (2017) that revealed that warnings attenuated the
repetition effect. Indeed, Bayes factors with substantively
inspired models may yield different conclusions than
conventional analysis.

Subjectivity and the Reasonable Range of
Prior Opinion

In this paper, we emphasize the role of judicious model
specification in inference. We take this theme down to a
fine-grain level by recommending that researchers use their
best substantive judgment to tune the prior settings. Some
readers may feel queezy about this degree of subjectivity in
analysis. After all, it seems reasonable as a starting point
to require that if two researchers run the same experiment
and obtain the same data, they should reach the same if
not similar conclusions. We cannot guarantee this, after
all, inference should depend on the models used. If two
researchers use different models, then they may reach
different conclusions.

To harmonize Bayesian inference with the desire for
objectivity, many Bayesian analysts actively seek to
minimize these effects by picking models, prior parametric

Table 4 Model comparisons for the truth-effect example (Bayes
factors for all specified models relative to the best model)

Model Bayes factor

Y∼S+T 1-to-4.5e191

Y∼S+T+R+SR 1-to-3.3

Y∼S+T+W 1-to-1.6e191

Y∼S+T+R+SR+W Best

Y∼S+T+R+SR+W+RW+SRW 1-to-353

forms, and heuristic methods of inference so that variation
in prior settings have minimal influence (Aitkin, 1991;
Gelman et al., 2004; Kruschke, 2013; Spiegelhalter et al.,
2002). In the context of these views, the effect of prior
settings on inference is viewed negatively; not only is it
something to be avoided, it is a threat to the validity of
Bayesian analysis.

We reject the starting point above including the view
that minimizing subjectivity in analysis is necessary or
even laudable. Rouder et al. (2016b) argue that the
goal of analysis is to add value by searching for
theoretically meaningful structure in data. Vanpaemel
(2010) and Vanpaemel and Lee (2012) provide a particularly
appealing view of the prior in this light. Accordingly,
the prior is where theoretically important constraint is
encoded in the model. In our case, the prior provides
the critical constraint on the relationships between main
effects and interactions. The choices of prior settings are
important because they define the models themselves.
Moreover, they unavoidably affect the predictions about
data. Therefore, these settings necessarily affect Bayes
factor model comparison. Whatever this effect, it is the
degree resulting from the usage of Bayes rule, which
in turn mandates that evidence for competing positions
are the degree to which they improve predictive accuracy
(Rouder & Morey, 2019).

When different researchers use different prior settings,
they are in effect using different models. Hence, they
may reach different opinions about the data. Rouder
et al. (2016b) argue that this variation is not problem-
atic. They recommend that so long as various prior set-
tings are substantively justifiable, the variation in results
should be embraced as the legitimate diversity of opin-
ion. When reasonable prior settings result in conflict-
ing conclusions, we can conclude only that the data do
not afford the precision to adjudicate among compet-
ing positions. And, there is little wrong with such a
conclusion.

To assess the sensitivity of the truth-effect conclusions
to the subjective choice of priors, we assessed the impact
of variation in a reasonable range of prior settings. To that
end, we repeated the analysis with different prior settings
on the three critical factors repetition (R), warning (W), and
repetition-by-participant interaction (R:S). Specifically,
we calculated Bayes factors for each combination of
the original values as specified above, half the original
values, and twice the original values, resulting in 27
combinations of reasonable prior settings. For all settings,
the preferred model remains the one with the additive
effect of warning. Even so, the degree of evidence for the
inclusion of warning varied from 1.5-to-1 to 6-to-1. These
values reflect the reasonable range of evidence from the
data.
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General Discussion

In this paper, we stress that judicious statistics comes
about from judicious consideration of substantive issues.
The main linkage is through models. Models capture
substantively relevant theoretical positions and allow for
inferential statements. The math, of course, needs to be
correct for proper inference, but the substantive models need
to make sense as well.

There is a large corpus of recommendations for
model specifications in within-subject contexts. Although
we suspect many authors would agree with the stress
on substantive issues in model interpretation, general
recommendations have not followed from this stress.
Consider Barr et al. (2013), which is highly cited and
typical. At first glance, their message seems similar to ours.
They too are concerned with useful model specifications,
and they too recommend including as many random-
effect structures as warranted by the design. But, there
are deep differences. Barr et al. (2013) never question
the wisdom of including people-by-condition interactions
without corresponding main effects of condition. Hence,
their null models correspond to Fig. 8C, and, in our view,
are untenable.

In the target article, van Doorn et al. (2021) evaluate the
Bayes factor outputs for well-specified and poorly specified
models. The implication is that the properties of these out-
puts should be taken into consideration in deciding which
models to use. This logic is familiar—in frequentist statis-
tics the long–run statistical properties of the outputs such as
power and coverage are key to test design. Yet, we object to
the notion that the choice of models should depend on such
statistical considerations. First, models have substantive
implications and interpretations, and these considerations
must be given priority over statistical considerations. Sec-
ond, Bayesian model comparison through Bayes factors is,
well, mathematically perfect. The Bayes factor is itself an
expression of the laws of probability (Etz & Vandekerck-
hove, 2018), and so if one has interpretable models that
capture substantive constraints, the Bayes factor gives the
uniquely best answer. This last statement holds regardless of
the statistical properties of the outputs. Third, we find that
when Bayes factor outputs do not match our intuitions, it
often means that our intuitions are lacking. We should avoid
choosing certain specifications just because resulting Bayes
factor outputs match classic ANOVA results.

The message in this paper is straightforward. Model
specification is too important to be massaged. It serves
at the heart of the intellectual activity of inference.
Models are instantiations of substantive statements. To
the degree they faithfully capture the substantive content,
they are interpretable. But, when they specify untenable
relations—as they do when interactions are included

without main effects—interpretability suffers. Evaluation of
models has both a statistical and a substantive component.
We as substantive scientists need not be experts in
understanding the statistical components, and these may
be offloaded to specialists including statisticians and
quantitative psychologist. But, as substantive scientists, we
need to be experts in the substantive components of model
specification. For if we are truly experts in our substantive
domains, then we are the best qualified to specify our
models.
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