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Abstract
In this comment, we report a simulation study that assesses error rates and average sample sizes required
to reach a statistical decision for two sequential procedures, the sequential probability ratio test (SPRT)
originally proposed by Wald (1947) and the independent segments procedure (ISP) recently suggested by
Miller and Ulrich (2020). Following Miller and Ulrich (2020), we use sequential one-tailed t tests as
examples. In line with the optimal efficiency properties of the SPRT already proven by Wald and
Wolfowitz (1948), the SPRT outperformed the ISP in terms of efficiency without compromising error
probability control. The efficiency gain in terms of sample size reduction achieved with the SPRT t test
relative to the ISP may be as high as 25%. We thus recommend the SPRT as a default sequential testing
procedure especially for detecting small or medium hypothesized effect sizes under H1 whenever a priori
knowledge of the maximum sample size is not crucial. If a priori control of the maximum sample size is
mandatory, however, the ISP is a very useful addition to the sequential testing literature.

Translational Abstract
Sequential tests analyze data sequentially when deciding between two statistical hypotheses H0 and H1.
After each step, a decision is made whether to accept H0, to accept H1, or to continue sampling data, based
on criteria that control error rates a (probability of accepting H1 when H0 holds) and b (probability of
accepting H0 when H1 holds). Using hypotheses on means of two samples as an example, we compare the
Sequential Probability Ratio Test (SPRT) originally proposed by Wald (1947) and the Independent
Segments Procedure (ISP) recently proposed by Miller and Ulrich (2020). While the former method proc-
esses data cumulatively and one-by-one with the maximum sample size unknown beforehand, the latter
method analyzes them independently in groups with both group size and maximum sample size known in
advance. Our simulation studies show that both methods work well as they (a) keep their predefined a and
b levels and (b) need smaller samples on average than the classical fixed-sample Neyman-Pearson test.
However, in terms of efficiency (i.e., the average sample size required to reach a decision), the SPRT clearly
outperforms the ISP (with a sample size reduction of up to 25% relative to the ISP). We conclude that the
SPRT is the method of choice to minimize costs and time required for statistical decisions whenever a priori
control of the maximum sample size is not necessary. If a priori control of the maximum sample size is
mandatory, however, the ISP is a very useful alternative to the SPRT.

Keywords: sequential testing, sequential probability ratio tests, independent segments procedure

Miller and Ulrich (2020) proposed a new independent segments
procedure (ISP) of sequential hypothesis testing that controls over-
all Type-1 (a) and Type-2 (b) error probabilities when deciding

between a statistical null hypothesis (H0) and an alternative hy-
pothesis (H1). Their ISP resembles certain group-sequential
designs (cf. Lakens, 2014; Pocock, 1977; Proschan et al., 2006;
Zhu et al., 2011) in that—after collecting each predefined subsam-
ple s, s = 1, . . . S, of the total data set—a decision is made whether
to terminate sampling and accept H1, to terminate sampling and
accept H0, or to continue by sampling an additional subset (or seg-
ment) of predefined size ns, provided that the maximum total sam-
ple size Nmax has not been reached yet (i.e., n1 þ . . . þ nS #
Nmax). Most importantly in the present context, the ISP is innova-
tive in that it analyzes later sampled segments independently from
previous subsamples, a feature that greatly simplifies calculation
of overall error probabilities. For example, when making a decision
after the second segment, only the data in the second segment affect
this decision whereas the data obtained in the first segment are
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ignored. Intuitively, such a procedure appears inefficient as statistical
decisions are made in ignorance of all data sampled from the same
underlying population prior to the most recent segment. Somewhat
surprisingly, however, Miller and Ulrich (2020) were able to show
that their ISP compares quite well with some established group-se-
quential methods in terms of efficiency and in fact may even be
somewhat more efficient than these methods under some conditions.
Clearly, this is a nontrivial and actually very surprising result given
that subsamples are analyzed independently in the ISP but cumula-
tively in group-sequential designs. Taking additional advantages of
the ISP into account (see Table 1 in Miller & Ulrich, 2020), the ISP
can be considered a very valuable innovation in the sequential testing
literature that has the potential to serve as the method of choice
whenever researchers engage in sequential testing.
The main purpose of our commentary is to discuss the ISP crit-

ically by extending the efficiency comparisons of the ISP to se-
quential probability ratio tests (SPRTs; Schnuerch & Erdfelder,
2020; Wald, 1947). Notably, Miller and Ulrich (2020, p. 3) con-
cede that their ISP cannot be expected to compete with the SPRT
in terms of efficiency when testing a point H0 (such as d = (l1 –
l0)/r = 0 for the two-groups t test) against a specific point H1

(e.g., d = .50, a “medium” effect, cf. Cohen, 1988). In contrast to
both the ISP and group-sequential designs, the SPRT does not ana-
lyze the data in segments or groups. Rather, after each sampled
data point, a decision is made based on the likelihood ratio of the
observed data under H1 and H0, respectively, whether to stop sam-
pling and accept H1, to stop sampling and accept H0, or to con-
tinue by sampling an additional data point. Thus, observed data
are analyzed cumulatively and step-by-step in smallest possible
units. Although it can be shown that the SPRT must eventually
reach a decision for either H1 or H0 with a finite sample size
(Wald, 1947, p. 157), there is no definite upper limit to the sample
size known in advance. Hence, other than in group-sequential
designs and in the ISP, a maximum sample size Nmax cannot be
defined a priori for the SPRT.
As already proven by Wald and Wolfowitz (1948), the SPRT is

the most efficient test procedure for tests between simple hypothe-
ses. In other words, when the true parameter corresponds to either
a simple H0 or a simple H1, there is no alternative sequential test
procedure that controls a and b error probabilities with smaller
expected sample sizes. Although we have known this fact already
for decades, it still is of considerable interest to compare the new
ISP method with the SPRT directly. One reason is that Wald and
Wolfowitz’s (1948) proof does not apply to composite hypotheses
that dominate behavioral research, for example, hypotheses about
mean differences with unknown variance. In sequential SPRT t
tests, therefore, the optimum property may only hold asymptoti-
cally (Lai, 1981). Another reason is that only direct comparisons
can tell us how much efficiency is actually lost when using the
new method instead of the SPRT. Because Miller and Ulrich
(2020) do not provide such a direct comparison, we add it in this
comment by reporting a Monte-Carlo study of ISP and SPRT
performance.
Notably, both the ISP and SPRT are general procedures that can

be adapted basically to any statistical test. However, for the sake
of simplicity and brevity, we follow Miller and Ulrich (2020) and
consider the one-tailed t-test scenario as a prototypical example
only. Our simulation study and its results will be described in the
next section. This is followed by a discussion of the results and

some recommendations for implementing and choosing among
different sequential procedures.

A Monte-Carlo Study Comparing One-Tailed SPRT
and ISP t Tests

Method

Using a sequence of simulation studies conducted in R1, we
compared the SPRT with the ISP for 12 different t test simulation
scenarios. Following Miller and Ulrich (2020), we employed one-
tailed t tests between H0: d = 0 and H1: d . 0. Note that SPRT
results for this scenario must necessarily differ from corresponding
results reported in Schnuerch and Erdfelder (2020), because the
latter refer to two-tailed rather than one-tailed t tests. Here, we
simulated four population scenarios in line with the distributional
assumptions of the two-groups t test (normal distributions within
groups with homogeneous variance r2). One scenario conforms to
H0: d = 0, whereas the other three correspond to H1: d . 0, with
d = .2, d = .5, and d = .8 representing “small,” “medium,” and
“large” effect sizes under H1, respectively, according to Cohen’s
(1988) effect size conventions. We applied three different versions
of both the SPRT and the ISP to each of these four simulated pop-
ulation scenarios. The three versions differed in the population
effect size d assumed in the sequential procedures under H1, again
considering small (d = .2), medium (d = .5), and large (d = .8)
hypothesized effects in line with Cohen’s (1988) conventions. Fol-
lowing Miller and Ulrich (2020), the Type-1 error probability was
set to the standard level a = .05, and the nominal power to detect
the hypothesized effect was 1 � b = .90 for either procedure. For
the ISP, again following the recommendations of Miller and
Ulrich (2020), the optimal maximum number of segments kmax

and the optimal astrong parameter was determined by numerical
search to minimize the expected sample size given that the base
rates for H0 and H1 are equal (that is, p(H0) = p(H1) = .50). For
each of the 4 3 3 = 12 possible settings of the simulations, 10,000
Monte-Carlo replications of both sequential procedures were
performed.

Results and Discussion

Table 1 summarizes the observed error rates of the two proce-
dures depending on the simulation setting. As expected, both pro-
cedures keep their nominal a = .05 level very well. Also, the
observed Type-1 error rate of the SPRT is always less than .05,
that is, the SPRT behaves somewhat conservatively. This conserv-
ative behavior occurs because the SPRT procedure almost always
clearly exceeds the thresholds for accepting H0 or H1 rather than
matching them exactly. This so-called “overshooting” is a well-
known phenomenon in all types of SPRT applications. Conse-
quently, the nominal a and b values serve as upper bounds to the
actual error rates in the SPRT and rarely match them exactly (cf.
Schnuerch & Erdfelder, 2020; Schnuerch et al., 2021).

Virtually the same picture emerges if we look at the observed
error rates for H1 scenarios with hypothesized population effect

1 R scripts for all simulations and analyses as well as all simulated data
are available at the Open Science Framework (https://osf.io/b4mhc/).
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sizes specified correctly (i.e., d = d, see the error rates set in bold-
face type in Table 1). In these cases, the nominal error rate b = .10
is never exceeded (apart from a single exception caused by sam-
pling error). Just like in the H0 scenario, overshooting leads to
SPRT error rates somewhat smaller than b = .10. Hence, the actual
power is slightly larger than the prespecified 1 � b = .90. Not sur-
prisingly, when H1 holds but the hypothesized H1 population
effect size d is misspecified, actual Type-2 error rates are almost
zero when d undercuts the true effect size (d , d) and much larger
than .10 when d overbids it (d , d). This holds for both the SPRT
and ISP, with negligible differences between procedures.
Most importantly in the present context, Table 2 summarizes the

average sample sizes required for each procedure to reach a decision.
As expected, the average N is always smaller for the SPRT compared
with the ISP, with the single exception of an incorrectly assumed
large effect under H1 (d = .80) when the true effect is of medium size
(d = .50). The gain in efficiency achieved by using the SPRT is often
considerable, the more so the smaller d and d. Under H0, the relative
efficiency gain in average sample sizes can be as high as 25% if the
hypothesized population effect size is d = .20. Under H1, up to 20%
smaller average sample sizes are possible if d = d = .50. In sum, the
SPRT can save up to 25% of the expected sample size required for
the ISP. It is safe to say that the efficiency gain is larger than 10% on
average, an advantage that is comparable to the relative efficiency
gain of the SPRT compared with group-sequential designs with four
predefined looks (Schnuerch & Erdfelder, 2020).
To illustrate, Figure 1 depicts the distribution of sample sizes

required for the SPRT (dark grey) and the ISP (light grey) to reach
a decision based on the d = d = .50 simulation setting with 10,000
Monte Carlo samples. In this case, kmax = 5 is an optimal maximum

number of segments for the ISP to minimize the expected sample
size. Hence, the ISP histogram is discrete with five possible sample
sizes until the procedure will eventually reach a decision.

Notably, although both the SPRT and the ISP are clearly more
efficient on average than the corresponding fixed-N, one-tailed
Neyman-Pearson t test, it can happen that the sequential proce-
dures require more observations than the Neyman-Pearson test.
For the settings underlying Figure 1, an a priori power analysis
results in a required fixed-N sample size of NNP = 140 (Faul et al.,
2009). As can be seen in Figure 1, this NNP is exceeded by the
SPRT in about 14% of the cases and by the ISP in about 16% of
the cases. Results are not much different for other simulation set-
tings (see Table 3). Thus, although we know the maximum possi-
ble sample size Nmax beforehand in the ISP, the actual N of the
ISP at termination will exceed NNP for given a, b, and hypothe-
sized effect sizes about as often as the corresponding N of the
SPRT does.

General Discussion

The present study extends previous results of Schnuerch and
Erdfelder (2020) by showing that the SPRT is not only more effi-
cient than sequential Bayes factors and certain group-sequential
designs for a wide range of scenarios but also more efficient than
the ISP recently proposed by Miller and Ulrich (2020), especially
when hypothesized population effect sizes are small. This result
is not surprising because it has been well known since Wald’s
(1947) and Wald and Wolfowitz’s (1948) seminal publications
that the SPRT provides maximum efficiency for tests between
two simple hypotheses.

Table 2
Average Sample Sizes of One-Tailed SPRT and ISP t Tests for Different True Population Effect Sizes d (Rows) and Nominal Error Rates
of a = .05 and b = .10, Separately for Different Hypothesized Population Effect Sizes d (Columns) in the Sequential Procedures

True effect size

Hypothesized effect size under H1

d = 0.20 d = 0.50 d = 0.80

SPRT ISP SPRT ISP SPRT ISP

d = 0 414 (316, 536, 1060) 549 (382, 764, 1146) 73 (56, 94, 184) 89 (62, 124, 186) 31 (24, 38, 76) 36 (26, 52, 78)
d = 0.20 500 (408, 642, 1186) 628 (382, 764, 1528) 118 (88, 154, 312) 121 (62, 186, 310) 43 (32, 56, 112) 44 (26, 52, 104)
d = 0.50 153 (142, 182, 264) 383 (382, 382, 382) 87 (70, 110, 200) 103 (62, 124, 248) 52 (40, 68, 134) 51 (52, 78, 130)
d = 0.80 92 (88, 106, 138) 382 (382, 382, 382) 49 (42, 58, 92) 69 (62, 62, 124) 39 (32, 48, 88) 42 (26, 52, 78)

Note. The values depicted in parentheses indicate 50%, 75%, and 95% percentiles, respectively, of the total sample size distribution. Boldface numbers
indicate simulations with correctly specified effect sizes under H1.

Table 1
Observed Error Rates of One-Tailed SPRT and ISP t Tests for Different True Population Effect Sizes d (Rows) and Given Nominal Error
Rates of a = .05 and b = .10, Separately for Different Hypothesized Population Effect Sizes d (Columns) in the Sequential Procedures

True effect size

Hypothesized effect size under H1

d = 0.20 d = 0.50 d = 0.80

SPRT ISP SPRT ISP SPRT ISP

d = 0 .046 .051 .044 .049 .039 .050
d = 0.20 .092 .107 .678 .694 .842 .833
d = 0.50 .000 .000 .082 .095 .376 .421
d = 0.80 .000 .000 .003 .003 .079 .100

Note. Error rates set in boldface type refer to simulations with correctly specified effect sizes under H1.
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What are the implications of this result for the choice
between different sequential test strategies? If the costs of sta-
tistical hypothesis testing are proportional to the number of
observations required to reach a statistical decision, SPRTs
should be used whenever an a priori known maximum sample
size is not mandatory. We believe this is quite often the case in
behavioral research, for example, in direct replications of theo-
retically important original studies (cf. Erdfelder & Ulrich,
2018), whenever online experiments or surveys are conducted
without a definite time limit, or when hypotheses are tested for
single participants by repeatedly sampling test items or test
stimuli from very large populations (e.g., Schnuerch et al.,
2020). We agree with Lakens (2014, p. 701) that researchers
have an ethical obligation to engage in most efficient sequential
procedures to “avoid waste of the time of participants and the
money provided by taxpayers.” The SPRT is ideally suited to
serve this goal whenever an a priori defined deadline for

finishing data collection is not required. Also, in contrast to
Miller and Ulrich’s (2020, p. 3) claim, practical aspects of
research planning are easily reconciled with SPRT applications.
Both lab resources and the budget required to pay participants
can be planned a priori, simply by calculating the expected dis-
tribution of sample sizes (see Figure 1) and by multiplying the
expected sample size by a factor that represents the costs per
observation (or per participant), plus a security margin to cope
with effects of sampling error. Overall, therefore, researchers
will save lab and budget resources by employing the SPRT
rather than any other sequential or nonsequential test procedure
that controls for a and b.

Concerning simplicity of computations, employing the SPRT
is not a big problem either. The two-groups SPRT t test (Hajnal,
1961) essentially involves repeated calculations of likelihood
ratios of observed t statistics under the noncentral and the cen-
tral t distribution, respectively. Given the availability of

Figure 1
Distribution of Total Sample Sizes for the One-Tailed SPRT and ISP Sequential t Tests Based on
Nominal Error Rates a = .05 and b = .10 for a Hypothesized Medium Effect Size Under H1 That
Matches the True Effect Size in the Underlying Population (i.e., d = d = .50)

Note. The upper part of the figure shows Monte-Carlo-estimated histograms of sample sizes at termination
(with the Neyman-Pearson sample size NNP = 140 marked on the abscissa) and the lower part depicts corre-
sponding box plots. See the online article for the color version of this figure.

Table 3
Relative Frequency of SPRT and ISP Simulations Exceeding the Corresponding Neyman-Pearson Sample Size NNP Determined by an a
Priori Power Analysis, Separately for Different True (d) and Hypothesized Population Effect Sizes (d)

True effect size

Hypothesized effect size under H1

d = 0.20 d = 0.50 d = 0.80

SPRT ISP SPRT ISP SPRT ISP

d = 0 .095 .094 .108 .094 .112 .080
d = 0.20 .130 .158 .288 .250 .244 .163
d = 0.50 .000 .000 .143 .161 .326 .249
d = 0.80 .000 .000 .005 .009 .170 .138

Note. Numbers set in boldface type refer to simulations with correctly specified effect sizes under H1 (d = d).
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noncentral t distribution functions in free software packages
such as R, implementation of the SPRT t test involves just a few
lines of R code (as detailed in Schnuerch & Erdfelder, 2020, p.
210; a workable, user-friendly R script may be downloaded
from https://osf.io/wz8da/). As an alternative, we also provide a
shiny app that handles various SPRT t tests for different H1

models, not just the case of a simple point H1 as discussed here
(https://martinschnuerch.shinyapps.io/Waldian-t-Tests/). Note
that, if desired, the SPRT can also be conducted with a desk cal-
culator, for example, by repeatedly calculating probability den-
sity ratios for observed t values based on the nctpdf(t, df, nc)
and the tpdf(t, df) functions, respectively, implemented in the
G*Power calculator (Faul, 2020, pp. 7–8; Faul et al., 2009).
One should keep in mind, however, that the general theory

of the SPRT only applies to tests between simple hypotheses,
that is, when the likelihood functions are fully specified.
Given that most of the tests conducted in psychology refer to
composite hypotheses, this is a potential limitation. Fortu-
nately, techniques have become available to cope with this li-
mitation in many situations, for example, replacing composite
hypotheses by simple hypotheses on transformations of the
data (Cox, 1952; Rushton, 1950; Schnuerch & Erdfelder,
2020), using weight functions and integrating out nuisance pa-
rameters (Wald, 1947; see also Schnuerch et al., 2021), or replac-
ing unknown nuisance parameters by their maximum likelihood
estimates for a given set of data—an asymptotic method that
works nicely when initial sample sizes in the SPRT are not too
small (Cox, 1963; Schnuerch et al., 2020).
However, if it is mandatory to know the maximum possible

sample size in advance, the ISP is a viable alternative to the
SPRT. The ISP compares very well in terms of mathematical
foundation, simplicity, applicability, precision, and efficiency
with established group-sequential methods. In addition, its defi-
cits in efficiency compared with the SPRT are relatively small
when to-be-detected effects under H1 are large (see Table 2).
Moreover, the ISP has several other advantages compared with
previously proposed sequential methods that have been nicely
summarized by Miller and Ulrich (2020).
There is one aspect, however, in which we respectfully dis-

agree with Miller and Ulrich (2020). They point out as an
advantage of the ISP that it is “usable without assuming an
effect size d” (Table 1 in Miller & Ulrich, 2020). Their claim
is correct since it is possible to control for a in the ISP with-
out any hypothesis about d—much like in null hypothesis sig-
nificance testing (NHST). However, we question the premise
that this constitutes an advantage. By blindly proceeding
along these lines without considering population effect size
and power, the ISP would inherit the well-known major dis-
advantages of NHST such as running the risk of performing
severely underpowered studies and, in turn, wasting effi-
ciency. Defining the procedure by choosing an arbitrary sam-
ple size ns essentially is an implicit commitment to an
arbitrary population effect size—the unknown effect for
which ISP has sufficient statistical power. Only the explicit
specification of a population effect size enables researchers to
exploit the full strength of the ISP: The joint optimization of
all input parameters such that the expected sample size for
detecting the hypothesized effect with the desired power
becomes a minimum (cf. Figure 5 in Miller & Ulrich, 2020).

Reasonable candidates for a priori effect size specifications
are (a) the minimum population effect of interest in a given
context (see, e.g., Lakens, 2014) or (b) a meta-analytic effect
size estimate based on previous related studies that takes pub-
lication bias into account (cf. Ulrich et al., 2018).

Although the expected sample size in the ISP can be notably
larger than in the SPRT, its maximum number of observations
is known in advance and, as already shown by Miller and
Ulrich (2020), the ISP is much more efficient on average than
the corresponding fixed-N Neyman-Pearson test. Obviously,
there is a price to pay for this efficiency gain relative to the
Neyman-Pearson test, and this price is that Nmax of the ISP will
exceed NNP. Thus, the importance of knowing Nmax before
starting the sequential procedure should not be overempha-
sized. Samples considerably larger than NNP can occur with
both the SPRT and the ISP for given a, b, and hypothesized
effect size, but fortunately such cases occur rarely in practice.

In sum, both the SPRT and the ISP are useful tools in the se-
quential statistics toolbox, with the SPRT serving as the default
choice whenever it is not necessary to specify Nmax in advance.
The ISP, however, is a reasonable alternative whenever Nmax

needs to be known in advance.
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