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Abstract
Randomized response models (RRMs) aim at increasing the validity of measuring sensitive attributes by
eliciting more honest responses through anonymity protection of respondents. This anonymity protection
is achieved by implementing randomization in the questioning procedure. On the other hand, this
randomization increases the sampling variance and, therefore, increases sample size requirements. The
present work aims at countering this drawback by combining RRMs with curtailed sampling, a sequential
sampling design in which sampling is terminated as soon as sufficient information to decide on a
hypothesis is collected. In contrast to nontruncated sequential designs, the curtailed sampling plan
includes the definition of a maximum sample size and subsequent prevalence estimation is easy to
conduct. Using this approach, resources can be saved such that the application of RRMs becomes more
feasible. An R Shiny web application is provided for simplified application of the proposed procedures.

Translational Abstract
Survey data are often subject to response biases, especially when sensitive (e.g., socially undesirable)
characteristics are studied. However, protecting the respondents’ anonymity can facilitate honest re-
sponding. Randomized response models (RRMs) achieve this goal by encrypting responses via random
noise. Unfortunately, this noise increases uncertainty in the data and, therefore, large samples are
required for sufficiently informative inference. To remedy this disadvantage, we propose to combine
RRMs with a simple sequential testing procedure, that is, curtailed sampling. Following this approach,
sample size requirements are reduced while still controlling statistical error probabilities. This way,
resources can be saved such that the application of RRMs becomes more feasible. In this article, we
describe how a curtailed sampling plan for RRM applications can be devised and how the respective data
can be analyzed. We illustrate the procedure by means of simulations and reanalysis of empirical data.
Additionally, we provide an easy-to-use R Shiny web application for simple implementation of the
described procedures.
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A large amount of findings in the human sciences is derived
from studies relying on self-reports as the only available data
source. However, self-reports are subject to biases, like the
social desirability bias (Paulhus, 1991). This problem becomes
especially pronounced, when the characteristic of interest is

sensitive, that is, socially, morally, or even legally incriminat-
ing (see Tourangeau & Yan, 2007), such as environmental
littering, endorsement of racist beliefs, drug abuse, or domestic
violence. Survey respondents and interviewees are reluctant to
disclose such incriminating information about themselves even
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when they are assured confidentiality. Instead, responses to
such questions are susceptible to selective nonresponding or
dishonest responding (Tourangeau, Rips, & Rasinski, 2000).
These self-protecting response tendencies do not only pose a
problem in research focusing on the individual but also in
research focusing on population characteristics. Specifically,
these individual response tendencies distort inferences on the
prevalence of the assessed characteristic.

Randomized response models (RRMs) are a class of ques-
tioning designs built to overcome this problem of self-
protecting responses. RRMs assure anonymity protection of
respondents by encrypting responses via a randomization pro-
cess. They were originally developed (Warner, 1965) for inves-
tigating the prevalence of binary sensitive characteristics, like,
for example, having consumed illicit drugs or not. In such
cases, as explained before, a conventional prevalence estimate
using the proportion of affirmative responses to a direct ques-
tion is prone to be biased and likely underestimate the true
prevalence because of self-protecting responses (see Krumpal,
2013; Tourangeau & Yan, 2007). In RRMs, in contrast, a
randomization process involved in the questioning makes single
responses inconclusive with respect to the individual manifes-
tation of the sensitive characteristic. Therefore, the individual
respondent’s anonymity is protected. Nevertheless, drawing
inferences on a group level is still possible knowing the prob-
ability underlying the randomization. This way, RRMs reduce
the urge to give self-protecting responses and therefore enable
a more valid assessment of the prevalence of sensitive attri-
butes. RRMs have been applied in psychology and related fields
to investigate prevalences of various sensitive topics; for ex-
amples, see Table 1. Readers interested in a comprehensive
review of RRM applications are referred to Fox (2016).

Unfortunately, the validity increase in RRMs comes at a cost:
The randomization, which is the key element of RRMs, induces
additional noise. Compensating for this drawback requires large
sample sizes— often more than 1,000 respondents—to allow for
sufficiently powered inference (Ulrich, Schröter, Striegel, &
Simon, 2012). Trying to reduce this demand on sample size by

adjusting the inherent parameters of the design is always at the
cost of anonymity protection, which would sabotage the in-
tended purpose of RRMs.

The original RRM was followed by a large number of further
developments (see Chaudhuri & Christofides, 2013; Fox, 2016,
for overviews). Some developments focused on increasing va-
lidity by increasing the psychological acceptability of the ques-
tioning design. Others aimed at increasing efficiency by de-
creasing sampling variance through design adjustments.
However, all RRMs use random encryption for creating ano-
nymity and thus inherit, to various extents, both the validity
advantages and efficiency disadvantages of the original RRM.
This inevitable tradeoff is arguably one of the main reasons to
restrain from applying RRMs.

However, altering the questioning design is not the only
possibility to reduce sample size requirements. Indeed, there are
procedures designed to make the sampling process itself more
efficient, namely sequential sampling procedures (see, e.g.,
Wetherill, 1975). Instead of sampling a fixed number of obser-
vations, which is predefined based on power calculations, the
data are monitored throughout the sampling process, and sam-
pling is terminated as soon as a specified criterion is reached.
As a consequence, if the data show a clear result, sampling can
in many cases be stopped earlier and, thus, resources are saved.
In this article, we demonstrate how RRMs can be incorporated
in such a sequential sampling plan, namely curtailed sampling
(see Wetherill, 1975), and how this can enhance the efficiency
of RRM applications. First, we introduce two well-established
RRMs to provide a better understanding of the mechanism
driving the increase both in anonymity protection and in sam-
pling variance. Second, we briefly outline the concept of se-
quential testing within curtailed sampling and how the two
before described RRMs can be integrated in this sampling plan.
Third, we describe how, following this procedure, unbiased
prevalence estimates can be computed. Fourth, we demonstrate
the efficiency of this curtailed RRM design by reanalyzing
empirical data on physical doping. Finally, we discuss potential
drawbacks and distinguish the present approach from other

Table 1
Exemplary RRM Applications in Psychology and Related Fields

Topic Study N

Induced abortion Abernathy, Greenberg, & Horvitz, 1970 2,871
Rape victimization Soeken & Damrosch, 1986 368�

Employee theft Wimbush & Dalton, 1997 196
Job applicant faking Donovan, Dwight, & Hurtz, 2003 221
Xenophobia Ostapczuk, Musch, & Moshagen, 2009 606
Corruption Gingerich, 2010 2,859
Dental hygiene Moshagen, Musch, Ostapczuk, & Zhao, 2010 2,254
Poaching Razafimanahaka et al., 2012 1,851
Cognitive enhancement Dietz et al., 2013 2,557
Academic misconduct Hejri, Zendehdel, Asghari, Fotouhi, & Rashidian, 2013 144
Organized crime Wolter & Preisendörfer, 2013 333
Physical doping Ulrich et al., 2018 2,168�

Prejudice against women leaders Hoffmann & Musch, 2019 721

Note. This table contains exemplary studies applying RRM to investigate various sensitive topics. It serves to
demonstrate the application range and does not comprise an exhaustive literature review. N � total size of the
sample administered for the respective question using RRM.
� These samples consist of subsamples that were analyzed separately.
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sequential procedures. In addition, we created a user-friendly R
Shiny web application to apply the methods introduced in this
article in substantive research.

Randomized Response Models

The Unrelated Question Model

In the first example, the unrelated question model (UQM;
Greenberg, Abul-Ela, Simmons, & Horvitz, 1969), the sensitive
question S of interest, for example, “Have you ever used illicit
drugs?” is presented together with an unrelated neutral question N,
for example “Is your mother’s birthday between January and June
inclusive?” Which of the two questions S and N a respondent has
to answer depends on the outcome of a randomization device, like
rolling a die. If, for example, the outcome is one, two, three, or
four, the respondent is to answer the sensitive question S. By
contrast, if the outcome is five or six, the respondent is to answer
the neutral question N. Importantly, this outcome is known only to
the respondent and only the response to either question is known
to the interviewer. Therefore, the individual respondent’s anonym-
ity is protected because a “Yes” response can either mean “Yes, I
have ever used illicit drugs” or “Yes, my mother’s birthday is
between January and June inclusive.” The benefit of including a
neutral question N is that any response is perceived as less stig-
matizing because some responses have nothing to do with the
sensitive topic. Figure 1 depicts the probabilities with which “Yes”
or “No” responses are generated in the UQM. Clearly, a response
can be generated without having to answer the sensitive question
(lower branch). From this figure, the total probability � of a “Yes”
response is

�UQM � p · � � (1 � p) · q, (1)

with probability p to receive the sensitive question S, prevalence �
of the sensitive attribute and prevalence q of the neutral attribute.
The neutral question N can be chosen such that q is known, like in
the example above, where q � .50 under the assumption that
birthdays are equally distributed over the year. The probability of
a “Yes” response can be estimated from the proportion of “Yes”
responses in a survey sample, leaving � the only unknown variable
in Equation 1. Solving Equation 1 for � gives the estimator (see
Greenberg et al., 1969)

�̂UQM �
�̂UQM � (1 � p) · q

p (2)

with sampling variance

Var(�̂UQM) �
�UQM · (1 � �UQM)

n · p2 . (3)

As can be seen in Equation 3, the randomization procedure is
reflected in the sampling variance through parameter p. In other
words, the randomization adds variance to the sampling process
and therefore impairs precision, leading to the above mentioned
efficiency loss. To illustrate, the difference in required sample size
between a direct question study and one that utilizes the UQM is
depicted in the dashed and solid curves in Figure 2, respectively.
This comparison is based on a common choice of UQM design
parameters, that is, p � .75 and q � .70. Clearly, the required
sample size is much larger in the UQM as compared with direct
questioning. Especially in cases where a high precision is required
(SE � 0.01) the difference becomes substantial and UQM appli-
cations are very costly compared with direct questioning.

The Crosswise Model

The second example is a newer development in the field of
RRMs, the crosswise model (CWM; Yu, Tian, & Tang, 2008). It
is a prominent model within a class of RRM developments labeled
nonrandomized response models. They are named thus because no
actual randomization device is part of the procedure although they
make use of random encryption, anyway. In the CWM, like in the
UQM, a sensitive question S is paired with a neutral question N,
with known prevalence q. In this case q must not equal .50. In
contrast to the UQM, respondents are not asked to respond to
either of the questions based on the outcome of a randomization
device but to give a combined response to both questions. As such,
the answer categories are “A: My response to both questions is
the same” (i.e., “Yes” to both or “No” to both) and “B: My
response to both questions differs” (i.e., “Yes” to one and “No” to
the other). In addition to evading the need for a randomization
device, this procedure has the advantage of not asking for a
confirming or dismissive response. Instead, the response catego-
ries themselves are neutral with respect to the sensitive attribute.1

The response generating probabilities are depicted in Figure 3.
From this figure, the probability of an “A” response can be
derived as

�CWM � q · � � (1 � q) · (1 � �). (4)

Clearly, any response can come from both a carrier and a
noncarrier of the sensitive attribute, depending on that person’s
status on the neutral attribute. Because the latter status is not
known, the individual respondent’s anonymity is protected. How-
ever, because the probability of carrying the neutral attribute is
known, the group-level prevalence can still be estimated by (see
Yu et al., 2008)

1 Of course, the probability of carrying the sensitive attribute is not the
same given different responses. For q � .50, P(C | “A”) � P(C | “B”) and
for q � .50, P(C | “A”) � P(C | “B”). For example, the odds of being a
carrier are nine times larger given an “A” than given a “B” response for
q � .75. However, it is unlikely that respondents’ decisions are influenced
by this.

Figure 1. Probability tree of the UQM. The sensitive question S and the
neutral question N are randomly received by respondents with probability
p and 1 � p, respectively. The probabilities of responding “Yes” and “No”
to the neutral question N are q and 1 � q and the probabilities of
responding “Yes” and “No” to the sensitive question S are � and 1 � �.
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�̂CWM �
�̂CWM � 1 � q

2q � 1 (5)

with sampling variance

Var(�̂CWM) �
�CWM · (1 � �CWM)

n · (2q � 1)2 . (6)

The increase in variance induced in this procedure is even
higher than in the UQM as is visible in the dotted curves in Figure

2. Like for the UQM, the CWM specification used in this demon-
stration represents a common choice of design parameters, that is,
q � .75. Thus, despite the high face-validity of the CWM, its
applicability is impaired by its excessive costs in sample size.

In conclusion, RRMs ensure individual anonymity protection by
design and therefore provide researchers with a tool to acquire
estimates less distorted by self-protecting responses. However, the
application of these procedures is impaired by high sample size
requirements because of the additional variance induced by ran-
domization. This is especially problematic whenever respondents
are difficult to recruit. Such difficulties arise, for example, when a
special population is investigated (e.g., elite athletes in a survey of
physical doping) or when taking part in the survey involves ob-
stacles, such as fear of being stigmatized (e.g., for being addicted
to drugs). Both these scenarios are not unlikely in research on
sensitive topics, which is the field of applications of RRMs.

Hypothesis Testing With Randomized
Response Models

This problem of high sample size requirements is relevant in
studies focusing on prevalence estimation as well as in those
focusing on hypothesis testing. There has been a general debate on
the justification of hypothesis testing as compared with parameter
estimation in psychology. Specifically, some authors argue that
parameter estimation provides more informative results and should
become the standard data analysis procedure (Cumming, 2014).
However, others argue that “[n]either hypothesis testing nor esti-
mation is more informative than the other; rather, they answer
different questions” and “hypothesis testing, not estimation, is
necessary for testing the quantitative predictions of theories” (Mo-
rey, Rouder, Verhagen, & Wagenmakers, 2014, p. 1290; see also,
Anderson, 2019). Thus, the choice between estimation and hypoth-
esis testing should be based on the research question.

Figure 2. Required sample size depending on questioning type. Depicted is the required sample size as a
function of the true prevalence �. The curves within a panel depict the questioning types: Direct question (DQ,
dashed), unrelated question model (UQM, solid) and crosswise model (CWM, dotted). The design parameters
are p � .75, q � .70 in the UQM and q � .75 in the CWM. The panels differ in the estimate’s standard error
(SE) 0.01, 0.03, and 0.05 from left to right. Note the individual y-axis scaling of each panel.

Figure 3. Probability tree of the CWM. Respondents are asked to respond
to both questions S and N in one response, “A” or “B.” Respondents carry
the neutral attribute N with known probability q or do not carry it ¬N with
probability 1 � q. Carriers of the neutral attribute respond “A” with
probability � because they carry the sensitive attribute and thus their
response to both questions is the same. They respond “B” with probability
1 � � because they do not carry the sensitive attribute and thus their
response to both questions differs. Noncarriers of the neutral attribute
respond “B” with probability � because they carry the sensitive attribute
and thus their response to both questions differs. They respond “A” with
probability 1 � � because they do not carry the sensitive attribute and thus
their response to both questions is the same. Note that the order of the two
questions in the tree is arbitrary and is not meant to imply a sequential
process. Instead, respondents answer both questions simultaneously and
the order in the tree could just as well be reversed.
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In fact, the RRM literature features many studies addressing
research questions that conform to hypothesis tests. For example,
many studies investigating the validity advantage of RRMs make
use of the more-is-better assumption, that is, they investigate
whether prevalences of sensitive attributes are inferred to be higher
when assessed using RRM questioning as compared with direct
questioning (see Lensvelt-Mulders, Hox, van der Heijden, &
Maas, 2005). Although in most studies following this assumption
prevalence estimates are compared between the questioning de-
signs (e.g., Nordlund, Holme, & Tamsfoss, 1994; Wimbush &
Dalton, 1997; Wolter & Preisendörfer, 2013), this is actually a
research question that calls for a hypothesis test with decision error
control (as in Hoffmann & Musch, 2016).

Likewise, in substantively motivated RRM applications, there
are research questions that are best addressed using hypothesis
tests. As such, an application of RRMs is often motivated by the
question: Is a certain sensitive attribute really as small as one
concludes from conventionally collected data? This question is
reasonable whenever estimates from direct questioning or other
commonly used data sources are surprisingly low.2 The straight-
forward statistical approach to such a question is a statistical test of
the hypothesis that the RRM estimate is higher than the conven-
tional estimate.

Apart from being the theoretically suitable approach for certain
research questions, hypothesis tests require smaller samples than
precise estimation. However, the required RRM samples are still
very large, as compared with hypothesis tests in the context of
direct questions (Ulrich et al., 2012). To address this drawback,
RRMs can be incorporated in a sampling framework that is de-
signed to be economic in terms of sample size, namely, sequential
testing or, more precisely, curtailed sampling.

Curtailed Sampling

When testing hypotheses about whether the prevalence of an
attribute lies in a certain range, classical data collection requires
the definition of a fixed sample size to achieve the requested
statistical power. In RRM studies, this usually leads to very large
sample size requirements, as explained before. A group of proce-
dures aimed at minimizing sample size requirements are sequential
tests. As stated above, the general idea of sequential tests is to
terminate sampling as soon as sufficient support for the hypotheses
is allocated, instead of continuing until some predefined sample
size is reached. The rationale for this procedure is that in some
cases, sufficient certainty for a decision might be present at an
earlier stage and, thus, further sampling would constitute a waste
of resources. Detecting this early support requires, as the name
indicates, sequential testing throughout the sampling process. The
challenge is, certainly, to design a sampling plan such that Type-1
and Type-2 decision errors are still controlled for.

There exists a variety of sequential sampling procedures.
Among these, one basic procedure, applicable to binomial data, is
curtailed sampling (see Wetherill, 1975). In curtailed sampling,
data collection is terminated corresponding to stopping rules that
apply when sufficient evidence for making a decision is obtained.
The stopping rules are defined by the maximum sample size Nmax

and a bound cs, denoting the amount of observed successes re-
quired to reject the null hypothesis. These parameters are equal to
the fixed sample size and the critical value in a Neyman-Pearson

test with (upper bound) Type-1 and Type-2 decision error proba-
bilities 	 and 
, respectively (Wetherill, 1975). In the classical
Neyman-Pearson test, an a priori defined number of observations
N � Nmax is sampled. If the number of successes among these
observations exceeds the critical value cs, the null hypothesis is
rejected. Otherwise, it is maintained. The rationale of the curtailed
sequential test is that if cs successes are observed at any point
before reaching Nmax, the test will always reject the null hypothesis
at Nmax. Therefore, in contrast to the Neyman-Pearson test, instead
of continuing the sampling process until N � Nmax is reached, it
can be terminated as soon as cs successes have been observed, thus
rejecting the null hypothesis. In the same vein, if cf � Nmax � cs �
1 failures are observed during the sampling process, the test will
always maintain the null hypothesis at Nmax, because the critical
value cs of successes cannot longer be reached. Hence, it can be
terminated already at this point, thereby rejecting the alternative
hypothesis.

The horizontal and vertical lines in Figure 4 display these two
bounds, while the diagonal line denotes the maximum sample size
Nmax, for an exemplary UQM sampling plan described in more
detail later. This diagonal line also represents the fixed sample size
of a corresponding Neyman-Pearson test. In the context of
the UQM (CWM), successes are defined as “Yes” responses and
failures as “No” responses (“A” and “B” responses). Thus, Nmax is
the maximum number of all responses before sampling is stopped
and cs is the minimum number of “Yes” responses (“A” responses)
required before rejecting Hypothesis H0.

The parameters Nmax and cs depend on the hypotheses about the
prevalence � of the sensitive attribute and the specified error
probabilities. If, for example, one wants to construct a sampling
plan that tests the Hypothesis H0 that a sensitive attribute has a
prevalence of at most �0 � .05 against the Hypothesis H1 that
the prevalence is at least �1 � .15 with error probabilities 	 � .05
and 
 � .10, the following needs to be considered. The probability
of deciding in favor of H0 should be 1�	 � .95 at � � .05 and

 � .10 at � � .15. In the area between �0 and �1, termed the zone
of indifference (Wetherill, 1975), no clear preference for a deci-
sion in favor of one of the two hypotheses exists. The resulting
probabilities of a correspondingly constructed curtailed sampling
procedure for deciding in favor of H0 for all possible values of �
are illustrated by the operating characteristic (OC) curve in Figure
5. The curve in Panel A depicts the straightforward case in which
the probability of an affirmative response equals the prevalence �,
that is in direct questioning.

However, in RRMs the probability of an affirmative response is
not � but �, which is a linear transformation of � and depends on
the design parameters of the RRM. For example, in case of the
UQM the probability of a “Yes” response, �UQM, can be computed
from � using Equation 1. The curve in Panel B of Figure 5 depicts
the resulting probabilities for deciding in favor of H0, now with
respect to �UQM. This demonstrates how the UQM influences the
sampling plan requirements: The zone of indifference becomes
narrower and, therefore, the differentiation between the competing
hypotheses becomes more difficult. Specifically, larger Nmax and

2 The study presented in the section Sequential Reanalysis of Empirical
Data later in this article is an example for such a case.
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cs are required such that the error probability requirements are
fulfilled for these stricter hypotheses.

Determination of the Sampling Plan Parameters

To determine Nmax and cs, a priori power analyses need to be
conducted. Exact values such that the resulting error probabilities
are closest to, but never larger than, 	 and 
 can be determined by
a numerical search algorithm. This algorithm searches for the
smallest Nmax which, in combination with a corresponding cs,
meets the requirements. Specifically, it iteratively searches all
possible values for Nmax along the lines of the following four steps:

1. Starting with an initial Nmax, a cs is derived by computing
the inverse of the CDF specified by the current Nmax and
�0 for the cumulative probability 1 – 	.

2. The CDF specified by the current Nmax and �1 is evalu-
ated at the current cs.

3. As long as the resulting cumulative probability is larger
than 
, Nmax is increased by �1 and the procedure is
repeated.

4. As soon as the resulting cumulative probability is smaller
or equal to 
, the search is terminated and the algorithm

returns the current instantiations of Nmax and cs as suit-
able sampling plan parameters.

The respective pseudocode can be obtained from Section A of
the online supplemental materials.

In the above mentioned UQM example (see Figure 4) with the
design parameters p � .75 and q � .70, the parameters defined by
an exact power analysis are Nmax � 290 and cs � 74, for testing
the hypotheses �0 � .05 and �1 � .15 with 	 � .05 and 
 � .10.
Thus, the stopping rules in this case are defined as: Stop sampling
if (a) the number of “Yes” responses reaches cs � 74 or (b) the
number of “No” responses reaches cf � 217. It is possible that
when either (a) or (b) is the case, the maximum number of
responses Nmax � 290 is reached, but it can never be exceeded.

Figure 4 depicts at what point the sampling paths of 10 simu-
lated samples3 reach one of the bounds. The mean sample size
when a bound is reached is N̄ � 204.00 with SD � 16.90. The
example demonstrates the advantages of a curtailed sampling
design: The actual sample size N is no longer a fixed value but a
random variable with maximum Nmax and an expected value lower

3 The simulation was conducted with the above described design param-
eters p � .75, q � .70, 	 � .05, 
 � .10, �0 � .05, �1 � .15, the resulting
bound-values cs � 74 and Nmax � 290 and true prevalence � � .25.

Figure 4. Sampling paths of simulated samples. The 10 samples were simulated as unrelated question model data
with design parameters p � .75, q � .70, and true prevalence � � .25. The depicted bounds are (a) the maximum
number of “Yes” responses cs � 74 (horizontal); (b) the maximum number of “No” responses cf � 217 (vertical); and
(c) the maximum total number of responses Nmax � 290 equaling the fixed sample size of a Neyman-Pearson test
(diagonal). They are based on the hypotheses �0 � .05 and �1 � .15 with 	 � .05 and 
 � .10.
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than Nmax. Specifically, in this example, the mean sample size
saving is Nmax �N̄ � 290 � 204 � 86. In other words, one can
come to a conclusion earlier and, therefore, less resources are
needed.

Efficiency of the Curtailed Sampling Plan

The extent of this advantage can be illustrated by the average
sample number (ASN) curve in Figure 6. It depicts the expected
sample size when reaching either of the bounds as a function of the
true parameter value �. The average sample size per value of � is
calculated by the possible sample sizes N weighted by their prob-
ability of occurrence. Specifically, the ASN curve of the above
example (left panel) has its maximum of N � 278.53 at � � .081.
For � � .26 the expected sample number drops below 200 and for
� � .75 below 100. As a comparison, the necessary sample size
for a classical test would always be Nmax, that is, 290. Thus, the
expected N in the curtailed sampling plan is always smaller than
the sample size required by classical analyses. Especially if � is
notably smaller or larger than the decision relevant values �0 and
�1, respectively, the sample size saving is substantial. What is
more, the sample size required by the curtailed design can never

exceed that of the classical analysis. Additional ASN curves for
varying UQM design specifications are provided in Section B of
the online supplemental materials.

The same line of reasoning applies to any other RRM. The only
difference between varying models lies in the beforehand trans-
formation of the prevalence � to the actual response probability �.
In case of the CWM, this is done using Equation 4 and gives the
probability �CWM of “A” responses. The curve in Panel C of Figure
5 depicts how this affects the testable hypotheses derived from the
same hypotheses concerning � as in the example above (�0 � .05
and �1 � .15 with 	 � .05 and 
 � .10). Clearly, the zone of
indifference is even smaller than in the UQM, which is in line with
the larger sampling variance of the CWM. In a CWM design with
q � .75 this test requires a curtailed sampling plan with Nmax �
722 and cs � 219. Again, the impact on expected sample size
manifests in the ASN curve in Figure 6 (right panel). Not surpris-
ingly, Nmax and the expected sample size exceed the corresponding
values in the UQM. However, compared to the sample size re-
quired by a classical test, the saving in sample size can, again, be
substantial, especially if the true prevalence is far from the indif-
ference zone. Additional ASN curves for varying CWM design

Figure 5. Operating characteristic curve. Depicted is the probability of deciding in favor of H0 depending on the true
probability of a “Yes” response � in a curtailed sampling plan. All panels refer to the same hypothesis test concerning
the prevalence �: �0 � .05 (dotted line) versus �1 � .15 (dashed line) with 	 � .05 and 
 � .10. The panels differ
with respect to the questioning design. Panel A depicts the case of direct questioning, such that the probability
of a “Yes” response � equals the prevalence �. Panel B depicts the case of the UQM, such that the probability
of a “Yes”-response � is a transformation of � using Equation 1, in this example with design parameters p �
.75 and q � .70. Panel C depicts the case of the CWM, such that the probability of a “Yes” response � is a
transformation of � using Equation 4, in this example with design parameter q � .75.
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specifications are also provided in Section B of the online supple-
mental materials.

Subsequent Estimation

Despite the previously discussed theoretical legitimization of
hypothesis testing, subsequent prevalence estimation can be desir-
able after conducting the hypothesis test. Estimation following a
statistical test is straightforward in a fixed-sample design, but
sequential sampling may introduce considerable bias for conven-
tional maximum-likelihood estimators (e.g., Whitehead, 1986).

Even though the same holds true for curtailed sampling proce-
dures when relying on conventional estimators, unbiased estima-
tion is feasible by using adjusted inverse binomial sampling esti-
mation. In inverse binomial sampling, rather than sampling a
predefined number of observations, evidence is collected until a
certain number Ns of confirmative responses is obtained. The
prevalence estimate then depends on the distribution of the total
number of responses until this number is reached. Similarly, in
curtailed sampling, estimation can be conducted depending on the

distribution of the total number of responses when one of the
bounds is reached.

Inverse binomial sampling follows a negative binomial distri-
bution and, therefore,

�̂ �
Ns � 1
N � 1 (7)

is an unbiased estimator of the probability � of a confirmative
response (Haldane, 1945). This probability estimate �̂ refers to the
probability of a “Yes” response or “A” response in the UQM or
CWM, respectively, and can thus be transformed to the prevalence
estimate �̂ using Equations 2 and 5. The inverse binomial sam-
pling estimator in Equation 7 can be applied to data assessed in a
curtailed sampling plan, whenever sampling is stopped because the
boundary cs of confirmative responses is reached. In this case,
Ns � cs.

If, however, sampling is stopped because the bound cf of dis-
missive responses is reached, the results do not follow a negative
binomial distribution. Therefore, the estimator in Equation 7 is not
an unbiased estimator of the probability of a confirmative response

Figure 6. Average sample number curves. The solid curves depict the expectation of the sample size N when
reaching one of the bounds of a curtailed sampling plan as a function of the prevalence �. The dashed lines depict
the maximum sample size Nmax. The gray dots depict the mean sample size N̄ of 10,000 samples simulated for
each prevalence value �. The two panels correspond to different sampling plans, one applying the unrelated
question model (UQM, left panel) and the other one applying the crosswise model (CWM, right panel). Both
sampling plans are defined with respect to the hypotheses �0 � .05 and �1 � .10 with 	 � .05 and 
 � .10.
For the UQM, the design parameters are p � .75, q � .70 and the resulting bound-values are cs � 74 and Nmax �
290. For the CWM, the design parameter is q � .75 and the resulting bound-values are cs � 219 and Nmax �
722.
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in these cases. However, this requirement is fulfilled by the ad-
justed estimator

�̂ �
N � cf

N � 1 . (8)

Indeed, the combination of both estimators yields a joint prob-
ability distribution of estimates with expectation equal to the true
prevalence. Further details on the derivation of these estimators are
provided in Section C of the online supplemental materials.

To illustrate the properties of the combined estimators, Figure 7
shows the theoretical sampling distributions of estimates attainable
from the example curtailed sampling plan for the UQM introduced
in the previous section (for testing the hypothesis whether � � .05
against � � .15). Specifically, each panel depicts the probabilities
of attaining the possible prevalence estimates for a specific true
prevalence value. The two estimators are marked by different
shades of gray. Notably, there is a violation of normality at the
transition point between the application ranges of the two different
estimators. Nevertheless, the expectation of the combined estima-
tors equals the true prevalence indicating unbiasedness.

In the same vein, Figure 8 shows the frequencies of prevalence
estimates obtained from simulated samples under the same exam-
ple sampling plan with the same true prevalence values as in
Figure 7. Each panel depicts the frequency distribution of the
subsequent prevalence estimates from 100,000 samples simulated
with the respective true prevalence value. The mean of the esti-
mates is close to the true values in all six cases with negligible
bias, that is, bias � 0.00013 with SD � 0.00010.

Given the non-normality of the estimates’ probability distribu-
tion, the determination of confidence intervals using the sampling
variance is not recommendable. Instead, the Clopper-Pearson in-
terval (Clopper & Pearson, 1934) can be calculated.4 The param-
eter coverage of the thus calculated 95% confidence intervals for
the estimates of the simulated samples in Figure 8 is .954. The
deviation from .95 is explainable by the discrete distribution which
does not allow for exact cutoffs leading to a more conservative
confidence interval.

The preceding analyses demonstrate that subsequent unbiased
estimation following curtailed sampling is feasible within UQM.
Importantly, the same holds for all types of RRMs. As such,
equivalent probability distributions and parameter recovery distri-
butions are obtainable for various curtailed sampling plans.

R-Scripts and a user guide for the application of the procedures
described in the two preceding sections are available on the Open
Science Framework (OSF; https://osf.io/7kteu/). The scripts pro-
vide functions for the determination of the sampling plan param-
eters Nmax and cs for given hypotheses, for plotting the OC and
ASN curve for a given sampling plan and for analyzing and
plotting curtailed sampling data. Additionally, an R Shiny web
application (Chang, Cheng, Allaire, Xie, & McPherson, 2020),
which requires no prior knowledge of R, is available on https://
fabiolareiber.shinyapps.io/CurtailedRRT/ for easy application of
these procedures. All reported simulation and analysis scripts are
also available from the OSF.

Sequential Reanalysis of Empirical Data

The following reanalysis illustrates the benefit of curtailed sam-
pling in the framework of the UQM. Ulrich et al. (2018) applied

the UQM to assess the dark figure of doping at two international
athletics competitions, namely the 13th International Association
of Athletics Federations World Championships in Athletics
(WCA) in Daegu, South Korea, and the 12th Quadrennial Pan-
Arab Games (PAG) in Doha, Qatar, both in 2011. The application
of the UQM elicited doping prevalence estimates that substantially
exceed common estimates derived by direct questioning or bio-
logical testing, �̂WCA � 43.6% (95% CI [39.4 – 47.9]) and �̂PAG �
57.1% (95% CI [52.4 – 61.8]) as compared with estimates of 2%
reported by the World Anti-Doping Agency (2012) for the same
year 2011. These estimates were obtained with this level of
precision on the basis of sample sizes of 1,203 and 965 at WCA
and PAG, respectively, and were therefore associated with
correspondingly high costs. However, what made these esti-
mates so interesting was not their exact size, but that they were
much higher than usual estimates. Importantly, as highlighted
above, such a finding is attainable through hypothesis testing
and it does not require precise estimation. Indeed, it is possible
to conduct a sequential test with curtailed sampling, because the
hypothesis concerning the prevalence is simple: Is the doping
prevalence estimated with the UQM higher than usual estimates
or not?

As prevalence estimates from official doping tests in elite ath-
letics are very low (World Anti-Doping Agency, 2012), the fol-
lowing test seems reasonable. Hypothesis H0 states that doping is
virtually nonexistent, that is 2% like in the official testing figures,
and Hypothesis H1 states that the prevalence is above 10%. Thus,
when � � .02, H0 should be selected with at least probability 1 �
	 � .95 and when � � .10, H0 should be selected with at most
probability 
 � .10, to preserve sufficient decision error control.
Given the design parameters q � .50 and p � .67 applied in the
study, the minimal values for Nmax and cs of a curtailed sampling
plan meeting the test’s requirements can be calculated as 490 and
102, respectively.

When reanalyzing each of the two samples sequentially, in the
order, in which they were assessed, a decision in favor of H1 that
the prevalence is equal to or above 10% would have been reached
markedly ahead of time, with sample sizes of 262 in the WCA
sample and 199 in the PAG sample, when reaching the bound of
“Yes” responses cs � 102. The corresponding sampling paths are
depicted in Figure 9. In 1,000 random permutations of each sample
the bound of “Yes” responses is reached in all cases. The mean
sample size when reaching the bound is 222.60 and 186.31 in the
WCA and PAG samples, respectively. In sum, sequential testing
would have led to accepting the hypothesis that the doping prev-
alence is higher than suggested by official testing figures and
thereby provided conclusions in the same direction as the original
results with markedly lower sample size requirements and decision
error control.

Following the sequential hypothesis test, the estimation proce-
dure proposed in the previous section can be applied to the data.
The estimates computed using the subsequent estimation proce-
dure on the data available at the point in sampling, when the
decision would have been made, are listed in Table 2 together with
the conventionally computed original estimates. Both estimates are
below the estimates calculated from the fixed samples but the

4 Highest density intervals can be calculated as an alternative approach.
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confidence intervals overlap in both cases. Naturally, the confi-
dence intervals of the sequential estimates are much larger than
those calculated from the whole sample, as is to be expected from
a study using a randomized response design with a sample size this
small. Still, it is possible to narrow down the range of the preva-
lence estimates by this procedure at much lower cost than in
classical fixed sample size studies. Importantly, the mean of the
estimates computed from all 1,000 permutations of the data nearly
equals the original estimates, 43.7 and 57.0 for WCA and PAG,
respectively. This confirms that the deviation of the sequential
estimate from the original estimate is due to random sampling
error. Thus, subsequent estimation as an additional step after the
sequential test could have served to acquire more precise informa-
tion on the doping prevalence.

Discussion

Randomized response models provide means to increase the
validity of estimates of sensitive attributes. Yet, their applicability
is impaired by high demands on sample size due to random noise
induced by the questioning design. Especially when aiming at
sufficiently powered statistical inference, this can lead to very

large required sample sizes. Combining RRMs with sequential
testing by means of a curtailed sampling plan can ameliorate this
drawback. Especially when the true prevalence is well outside the
zone of indifference between the decision relevant values of the
hypothesis test, considerable sample size savings are possible. In
such cases, conclusions concerning the possible range of the prev-
alence of a sensitive attribute can be drawn with decision error
control and at much lower cost than in classical fixed sample size
studies. Additionally, subsequent estimation of the prevalence of
interest using closed form estimators adjusted to the outcome of
the hypothesis test can serve to acquire additional information.
Reanalysis of data of a large scale UQM-study on the prevalence
of doping in elite athletics (Ulrich et al., 2012) shows that results
pointing in the same direction can be obtained at much lower cost
using curtailed sampling and subsequent estimation.

However, comparing the results of the conventional estimation
to those of the subsequent estimation within curtailed sampling
highlights a limitation: The estimates are not as precise when
sampling is conducted in a curtailed sampling plan. However, this
is not surprising, as the goal of curtailed sampling is sample size
reduction and estimates from a study with smaller sample size will

Figure 7. Theoretical sampling distributions of �̂ |�. Depicted are the probabilities of obtaining a certain
estimate after testing the hypotheses �0 � .05 and �1 � .15 with 	 � .05 and 
 � .10 in a curtailed sampling
plan using the UQM with design parameters p � .75, q � .70. The panels differ with respect to the true
prevalence value, from � � 0 in the top left panel to � � 1 in the bottom right panel, which is indicated by the
vertical line in each panel. The estimates marked by black points are obtainable from samples in which the
horizontal bound cs � 74 is reached and are calculated using the estimator in Equation 7. The estimates marked
by gray points are obtainable from samples in which the vertical bound cf � 217 is reached and are calculated
using the estimator in Equation 8.
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always be less precise. Moreover, this is not a real flaw of the
method, because curtailed sampling is not designed for precise
estimation but for hypothesis testing. Therefore, as stressed before, it
should be applied only if the research question involves a test of
sensible hypotheses. Specifically, this could include testing whether a
prevalence is in a relevant range in a pilot study, testing whether
estimates changed in a replication study, or testing whether RRM
estimates differ from estimates derived using other methods in a
validation study. In such cases, curtailed sampling can substan-
tially increase efficiency and is recommendable.

There are also sequential methods developed specifically for
estimation (e.g., Kelley, Darku, & Chattopadhyay, 2017). For
instance, the basic rationale of Kelley, Darku, and Chattopadhyay
(2017) is to sample until the confidence interval of the estimate is
smaller or equal to a desired width. The advantage of this approach
is that no assumptions on unknown parameters are necessary, as is
the case when one determines the necessary fixed sample size for
a sufficiently precise estimate beforehand. As discussed in the
introduction of this article, both approaches have advantages and
the choice between hypothesis testing with error control and pre-

cise parameter estimation should depend on the research question.
In either case, a sequential design can increase sampling effi-
ciency.

Within the hypothesis testing framework, it is important to keep
in mind that the curtailed sampling plan only applies to the test of
simple hypotheses, that is, hypotheses in which all parameters are
either known or specified by the hypotheses. This is not the case,
for example, if the RRM includes additional unknown parameters
to account for cheating behavior (Clark & Desharnais, 1998;
Reiber, Pope, & Ulrich, 2020). In the same vein, hypotheses on
prevalence differences between groups are not simple, unless the
concrete group prevalences are specified. Obviously, classical tests
have the same limitation because a priori power analyses require
specification of all parameters. However, as in classical analysis, it
is possible to define a curtailed sampling plan for composite
hypotheses based on conservative (i.e., extreme) assumptions
about the unknown parameters. In this case, the error probabilities
of the procedure denote upper limits which will hold for any
parameter values less extreme than specified. Note, however, that
a conservative assumption will result in a less efficient test.

Figure 8. Simulated sampling distributions of �̂ |�. Depicted are frequency distributions of prevalence
estimates �̂ calculated from simulated samples using the information available in the moment when sampling
would have been stopped in a curtailed sampling plan for testing the hypotheses �0 � .05 and �1 � .15 with
	 � .05 and 
 � .10. Samples were simulated in a UQM design with design parameters p � .75, q � .70. The
panels differ with respect to the true prevalence value, from � � 0 in the top left panel to � � 1 in the bottom
right panel, which is indicated by the vertical line in each panel. Each panel includes a total of 100,000 simulated
samples. The estimates from samples in which the horizontal bound cs � 74 was reached are depicted in black
and were calculated using the estimator in Equation 7. The estimates from samples in which the vertical bound
cf � 217 was reached are depicted in gray and were calculated using the estimator in Equation 8.
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For simple hypotheses, we demonstrated that the curtailed sam-
pling plan is more efficient than classical analysis. However,
curtailed sampling is not the only sequential testing procedure.
Another efficient procedure is the well-known sequential proba-
bility ratio test (SPRT; Wald, 1947). Here, the likelihood ratio of
two competing hypotheses is continuously computed throughout
sampling until it reaches one of two boundary values, which are
based on predefined decision error probabilities. For the case of
simple hypotheses, the SPRT has been proven to be the most
efficient test procedure, that is, for given error rates no sequential
test requires less observations on average (Wald & Wolfowitz,
1948). The SPRT has been applied to common test scenarios such

as t tests (see Schnuerch & Erdfelder, 2020) and it is straightfor-
ward to apply it to RRM analysis, as well (Schnuerch, Erdfelder,
& Heck, 2020).

A potential limitation of the SPRT is that it is a so-called
nontruncated sequential procedure. That is, there is no definite
upper sample size at or before which the test will reach a decision.
Curtailed sampling, on the other hand, is a truncated procedure
because a lower and upper bound for the sample size are known in
advance. Therefore, potential costs and required resources are
easier to calculate, which makes curtailed sampling more conve-
nient to plan beforehand.

Moreover, curtailed sampling studies are straightforward to
conduct. During sampling, one only has to count observed re-
sponses, whereas other sequential designs often require complex or
tedious computations. And finally, as mentioned before, curtailed
sampling enables simple, unbiased subsequent estimation of the
unknown prevalence. Although estimates following a sequential
test stopping early will be less precise than for fixed-sample
procedures with larger samples, the estimator for the curtailed test
presented herein is unbiased. Thus, curtailed sampling constitutes
a compromise between the advantages of sequential tests (i.e.,
efficiency) and those of classical analysis (i.e., easy to plan and
unbiased estimation).

In conclusion, curtailed sampling is a relatively easy to imple-
ment and practical tool for enhancing the efficiency of surveys
applying RRMs. By reducing costs, it makes RRM applications
more feasible for studies in which the approach usually would
have been prevented by its excessive costs. Therefore, combining

Figure 9. Sampling paths of the two samples in the doping study. The underlying design parameters are p �
.50, q � .67. The depicted bounds are cs � 102 (horizontal), cf � 388 (vertical), and Nmax � 490 (diagonal) and
are based on the hypotheses �0 � .02 and �1 � .10 with 	 � .05 and 
 � .10. The two samples were assessed
at the World Championships in Athletics (WCA) in 2011 in Deagu, South Korea, and at the Pan-Arab Games
(PAG) in 2011 in Doha, Qatar.

Table 2
Conventional and Subsequent/Sequential Estimation of
Doping Prevalence

Sample

Conventional estimation�
Subsequent/sequential

estimation

N Estimate CI N Estimate CI

WCA 1,203 43.6% 39.4, 47.9 262 33.2% 24.7, 42.4
PAG 965 57.1% 52.4, 61.8 199 51.5% 41.5, 62.5

Note. N � sample size, a random variable in case of sequential estima-
tion: current sample size, when bound cs � 102 “yes” responses were
reached; CI � 95% confidence interval (Clopper-Pearson intervals for the
subsequent estimates); WCA � 13th International Association of Athletics
Federations World Championships in Athletics in Daegu, South Korea,
2011; PAG � 12th Quadrennial Pan-Arab Games in Doha, Qatar, 2011.
� Estimates and confidence intervals are adopted from Ulrich et al. (2018).
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curtailed sampling with RRMs provides more valid assessment of
sensitive attributes for a broader range of research questions.
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