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a b s t r a c t

Stimulated by William H. Batchelder’s seminal contributions in the 1980s and 1990s, multinomial
processing tree (MPT) modeling has become a powerful and frequently used method in various
research fields, most prominently in cognitive psychology and social cognition research. MPT models
allow for estimation of, and statistical tests on, parameters that represent psychological processes
underlying responses to cognitive tasks. Therefore, their use has also been proposed repeatedly for
purposes of psychological assessment, for example, in clinical settings to identify specific cognitive
deficits in individuals. However, a considerable drawback of individual MPT analyses emerges from
the limited number of data points per individual, resulting in estimation bias, large standard errors,
and low power of statistical tests. Classical test procedures such as Neyman–Pearson tests often require
very large sample sizes to ensure sufficiently low Type 1 and Type 2 error probabilities. Herein, we
propose sequential probability ratio tests (SPRTs) as an efficient alternative. Unlike Neyman–Pearson
tests, sequential tests continuously monitor the data and terminate when a predefined criterion is met.
As a consequence, SPRTs typically require only about half of the Neyman–Pearson sample size without
compromising error probability control. We illustrate the SPRT approach to statistical inference for
simple hypotheses in single-parameter MPT models. Moreover, a large-sample approximation, based
on ML theory, is presented for typical MPT models with more than one unknown parameter. We
evaluate the properties of the proposed test procedures by means of simulations. Finally, we discuss
benefits and limitations of sequential MPT analysis.

© 2020 Elsevier Inc. All rights reserved.

1. Multinomial processing tree models

Among a multitude of outstanding contributions to the field
of psychology, one of the arguably most prominent instances
of William H. Batchelder’s (1940–2018) scientific impact is the
development of a class of stochastic models for the measurement
of cognitive processes, known as multinomial processing tree
(MPT) models. In what is now considered a classical article, Riefer
and Batchelder (1988) introduced and promoted the use of MPT
models which, in contrast to other scientific areas, had received
but little attention in psychology at the time (Erdfelder, Auer,
Hilbig, Aßfalg, Moshagen, & Nadarevic, 2009). Stimulated by this
pioneering work and Batchelder’s ongoing effort in the following
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years (e.g., Batchelder & Riefer, 1999), MPT models have become a
powerful instrument to measure and disentangle the contribution
of latent processes underlying observed behavior.

MPT models are substantively motivated stochastic models for
categorical data (but see Heck, Erdfelder, & Kieslich, 2018, for an
extension to continuous data). They are based on the assumption
that each observable response in a specific paradigm originates
from a finite set of sequences of discrete processing states. These
sequences are conceptualized as branches in a processing tree.
Nodes along these branches denote latent cognitive states and the
links between the nodes represent (conditional) probabilities of
entering the respective states. The product of these link probabili-
ties determines the branch probability. Each category probability,
in turn, is defined as the sum of probabilities of all branches
terminating in this category. Based on the assumption that ob-
served category frequencies follow a multinomial distribution,
the (conditional) link probabilities can be estimated and, thus, the
contribution of each latent processing state can be measured and
tested statistically (Erdfelder et al., 2009; Hu & Batchelder, 1994).

Nowadays, MPT models are widely used in various branches
of psychology, particularly in (social-)cognitive research. Even
though the primary context of MPT applications is experimental
psychology, Batchelder himself repeatedly promoted the use of
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MPT models for psychometric purposes (e.g., Batchelder, 1998;
Batchelder & Riefer, 1999). Unlike item response models, for ex-
ample, MPT models are based on explicit assumptions about the
latent cognitive processes underlying observed responses and aim
at measuring and disentangling these processes. Thus, Batchelder
(1998) identified an ‘‘untapped potential’’ (p. 331) of what he re-
ferred to as ‘‘cognitive psychometrics’’ for individual assessments
of specific cognitive processes, for example in clinical settings.

Despite the apparent appeal of MPT models for individual
assessment, there is a notable limitation of this type of cognitive
psychometrics. In experimental settings, MPT analyses typically
make use of group data, either in a pooled or a hierarchical fash-
ion (Chechile, 2009; Heck, Arnold, & Arnold, 2018; Klauer, 2006,
2010; Smith & Batchelder, 2010). As a consequence, parameter
estimates and statistical tests are based on many data points,
often resulting in high precision of estimates and high statistical
power of tests. Individual analyses, in contrast, are typically based
on far fewer observations. Thus, parameter estimates may be
biased and will necessarily be less precise, resulting in large
standard errors and low statistical power (Batchelder, 1998).

To remedy the problem of few observations in individual pa-
rameter estimation, Batchelder suggested to make use of Bayesian
methods. Drawing on data from other individuals that are
matched to the testee based on theoretical considerations (e.g., a
reference group similar in age and educational background),
one can construct a prior distribution for the parameters of
interest. Using Bayes’ theorem, this prior is then combined with
the testee’s data to obtain the posterior distribution. The mean
(or mode) of this distribution serves as a point estimate while
its variance or other measures of dispersion denote estimation
uncertainty. When there is little variance in the prior, this em-
pirical Bayes estimation procedure will result in a more precise
estimate than classical maximum likelihood estimation without
prior information (Batchelder, 1998). Of course, there is also a
danger of considerable bias if the testee deviates systematically
from other individuals (i.e., if the prior is misspecified).

A frequent goal in individual clinical assessment, however,
goes beyond mere estimation of model parameters: To identify a
specific cognitive deficit or to decide on a particular intervention
for the individual testee, statistical tests on model parameters
are required. For example, to assess whether or not an indi-
vidual is able to utilize a certain cognitive process, one might
want to test whether the corresponding parameter is substan-
tially different from zero. In MPT modeling, tests of parameter
constraints typically rely on null-hypothesis significance testing
(NHST) based on the asymptotic distribution of some fit statistic
under the null hypothesis (Batchelder & Riefer, 1999). In MPT
models, these fit statistics denote the distance between model-
implied and observed category frequencies. They can be charac-
terized as a power divergence family (Read & Cressie, 1988), the
most well-known special cases of which are Pearson’s χ2 or the
log likelihood ratio G2 (Hu, 1999; Hu & Phillips, 1999).

Standard applications of NHST to MPT models typically ignore
statistical power, that is, the probability of rejecting a set of
parameter constraints if the constraints do indeed not hold in
the population. However, both in basic research and in clinical
settings, sufficient statistical power is necessary for unbiased
inference (Batchelder & Riefer, 1990, 1999). To this end, classical
methods to control statistical error probabilities based on the
seminal theory by Neyman and Pearson (1933) require an a
priori power analysis. Given a certain expected effect size and a
predefined Type 1 error probability α, the Type 2 error probability
β (and the power of the test, 1 − β) is a function of the sample
size. Although power analyses are easily carried out with MPT
software (e.g., multiTree; Moshagen, 2010) or general-purpose
software for power analysis (e.g., G*Power; Faul, Erdfelder, Buch-
ner, & Lang, 2009), there are two major drawbacks in the context

of MPT analyses: First, a power analysis not only requires as-
sumptions concerning the test-relevant parameters as specified
by the null and the alternative hypothesis but depends on all
other model parameters as well. This poses a problem whenever
the model contains parameters for which the population values
are unknown, so-called nuisance parameters. The second major
limitation of classical power analyses in the Neyman–Pearson
framework concerns scenarios in which the expected effect size
is small. In this case, classical Neyman–Pearson tests require
extremely large numbers of observations, often much larger than
realistically feasible.

The problem of achieving a sufficiently powered hypothesis
test is particularly pressing when data collection is costly: either
when assessing a single participant with as few trials as possible
or when each participant provides only a single data point (e.g.,
Batchelder, 1998; Heck, Thielmann, Moshagen, & Hilbig, 2018;
Klauer, Stahl, & Erdfelder, 2007; Moshagen, Hilbig, Erdfelder,
& Moritz, 2014; Moshagen, Musch, & Erdfelder, 2012; Schild,
Heck, Ścigała, & Zettler, 2019). However, it potentially applies
to any MPT model analysis (Batchelder & Riefer, 1990, 1999;
Riefer & Batchelder, 1988). Therefore, in this article we introduce
a sequential statistical method for hypothesis testing in MPT
models that (1) allows to control both α and β error probabilities
(unlike NHST), (2) requires on average much less observations
than classical power analyses, and (3) does not rest on explicit
assumptions about the population values of nuisance parameters
of the model.

The approach we promote herein is based on Abraham Wald’s
sequential probability ratio test (Wald, 1947). In the following, we
introduce the basic idea as well as an extension of Wald’s method
by Cox (1963). We then show how sequential tests can be used
for efficient hypothesis tests in MPT models and how this may im-
prove the applicability of MPT models for purposes of individual
assessment. Overall, with the present article we hope to increase
efficiency not only of typical experimental applications of MPT
models, but also for applications to individuals in the context of
cognitive psychometrics.

2. Sequential analysis

2.1. Sequential probability ratio tests

Classical statistical methods rely on fixed samples of an a
priori defined size. Sequential statistics, in contrast, are based on
the continuous monitoring of the data throughout the sampling
process. This process continues until some predefined criterion
is met, at which point sampling is terminated (optional stop-
ping) and a statistical decision is made. Crucially, unlike the
recursive application strategy of classical methods known as
p-hacking (Simmons, Nelson, & Simonsohn, 2011), sequential
methods do not compromise control of long-term error rates
(Wetherill, 1975).

Due to their characteristic to terminate early whenever the
data strongly support a hypothesis, statistical analysis may sub-
stantially reduce the required sample size. For a decision between
two simple hypotheses, Wald’s (1947) sequential probability ratio
test (SPRT) has been proven to be the most efficient test (Matthes,
1963; Wald & Wolfowitz, 1948). That is, for given long-term
error rates α and β , there is no test procedure that requires less
observations than the SPRT on average.

To illustrate the SPRT, consider a random variable X, X ∼

f (x|θ), where θ denotes the true parameter vector of the un-
derlying population. The random variable may be discrete or
continuous, in which case the function f (.) refers to the proba-
bility mass or the probability density, respectively. Assume a test
of the two simple hypotheses H0: θ = θ0 versus H1: θ = θ1. A
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hypothesis is simple when all parameters of the statistical model
that define the probability distribution of the data are either
known or specified by the hypothesis. If at least one parameter
is not known or restricted to a specific value, the hypothesis
is composite. For the given example, the parameter vector θ is
completely specified under each hypothesis. Thus, the hypotheses
are simple and the SPRT is the optimal test to decide between
them with a given strength (α, β).

In the SPRT, the ratio of the probabilities of the observed data
after any nth observation, xn = (x1, . . . , xn), under each hypoth-
esis i is computed. As the probability density is proportional to
the likelihood, that is, f (xn|θi) ∝ L(θi; xn), this ratio is typically
referred to as a likelihood ratio (LR):

LRn =
f (xn|θ1)
f (xn|θ0)

=
L(θ1; xn)
L(θ0; xn)

. (1)

Sampling continues by adding independent observations xn+1 as
long as

B < LRn < A. (2)

If LRn ≥ A, sampling is terminated and H1 is accepted. By
definition, any sample xn which leads to the acceptance of H1 is
thus at least A times as likely under H1 as under H0. This implies
that the probability to accept H1 is at least A times larger under
H1 than under H0. In the usual notation based on the Neyman–
Pearson theory, the former probability is defined as 1−β , whereas
the latter is denoted by α. Hence, 1 − β ≥ Aα, which can be
written as
1 − β

α
≥ A. (3)

In contrast, if LRn ≤ B, sampling is terminated and H0 is
accepted. Following the same logic as for A, we see that

β

1 − α
≤ B, (4)

which implies that upper/lower limits for A and B are given
by (1 − β)/α and β/(1 − α), respectively. In practical appli-
cations, however, the inequalities in (3) and (4) can be treated
as equalities defining threshold values A and B for the LR that
satisfy pre-specified statistical error probabilities α and β . More
precisely, the resulting sequential test procedure provides an
approximate control of error probabilities with α and β serving
as upper bounds to the actual error rates (Wald, 1947; Wetherill,
1975).

Functions describing the test procedure’s properties (i.e.,
power and expected sample size at termination) can be ap-
proximated analytically by formulae derived by Wald (1947).
Moreover, as mentioned before, the SPRT has been proven to
be the most efficient test for given error rates. As soon as the
statistical model defining the probability distribution of the data
contains nuisance parameters, however, the general theory of the
SPRT no longer applies.

This constitutes a practically relevant limitation since compos-
ite hypotheses due to nuisance parameters occur frequently in
many common MPT models (e.g., in models for memory
paradigms, which typically comprise guessing parameters). Dif-
ferent methods have been proposed to remedy this problem:
For example, Wald (1947) suggested to integrate out nuisance
parameters by means of weight functions (that resemble prior
distributions in Bayesian inference). In a different approach, the
likelihood ratio is constructed based on simple sufficient statis-
tics (Barnard, 1952; Cox, 1952; Rushton, 1950). Although this
approach provides an adequate solution for certain problems
such as the classical t test (Schnuerch & Erdfelder, 2019), its
applicability is restricted to specific situations. In the following,
we consider a more general method introduced by Cox (1963),
building on Bartlett’s (1946) idea to construct a sequential test
based on asymptotic maximum likelihood (ML) theory.

2.2. Sequential maximum likelihood ratio tests

Let X be a random variable denoting the observed data, with
X ∼ f (x|θ, φ). Similar as in the SPRT above, we consider a test
of the hypotheses Hi: θ = θi (i = 0, 1), φ denoting nuisance
parameters of the statistical model. The method developed by Cox
(1963) and outlined in this section applies to any θ, φ regardless
of their dimensionalities. Therefore, without loss of generality,
we will assume that both parameters are single-valued in what
follows. A detailed mathematical justification of Cox’s method can
be found in Breslow (1969).

In the SPRT, it is straightforward to consider the log likelihood
ratio rather than the likelihood ratio. Assume the true value of
φ was known, then the SPRT as defined in the previous section
would require to continue sampling as long as

log
(

β

1 − α

)
< ℓ(θ1, φ; xn) − ℓ(θ0, φ; xn) < log

(
1 − β

α

)
, (5)

where ℓ(θi, φ; xn) denotes the log likelihood for hypothesis i after
n observations. Calculations involving exact log-likelihood func-
tions are often difficult or even infeasible. As a remedy, based on
large-sample theory, the exact log likelihood can be replaced by
a second-order Taylor series expansion about the true parameter
value θ , treating the difference θi − θ (i = 0, 1) as of order 1/

√
n

(cf. Joanes, 1972):

ℓ(θi, φ; xn) = ℓ(θ, φ; xn) + (θi − θ )
∂ℓ(θ, φ; xn)

∂θ

+
1
2 (θi − θ )2

∂2ℓ(θ, φ; xn)
∂θ2 , (6)

such that the log likelihood ratio in (5) becomes

(θ1 − θ0)
∂ℓ(θ, φ; xn)

∂θ
+

1
2 (θ1 − θ0)(θ1 + θ0 −2θ )

∂2ℓ(θ, φ; xn)
∂θ2 . (7)

If, in contrast, φ is not known, the log likelihood ratio can be
constructed using the ML estimate φ̂ based on xn, that is,

ℓ(θ1, φ̂; xn) − ℓ(θ0, φ̂; xn) . (8)

Note that Bartlett (1946) suggested separate ML estimates for
the nuisance parameter φ conditional on H1 and H0 (i.e., the
estimates φ̂1 and φ̂0 assuming θ = θ1 or θ = θ0, respectively).
In contrast, Cox’s (1963) method involves the use of a single
estimate φ̂ for both terms in (8), conditional on a model without
restrictions on θ or φ. Expanding about the true parameter values
(θ , φ) analogously to (6), (8) becomes

(θ1 − θ0)
∂ℓ(θ, φ; xn)

∂θ
+

1
2 (θ1 − θ0)(θ1 + θ0 − 2θ )

∂2ℓ(θ, φ; xn)
∂θ2

+ (θ1 − θ0)(φ̂ − φ)
∂2ℓ(θ, φ; xn)

∂θ∂φ
. (9)

It is easy to see that (9) is equivalent to (7) if the last term
becomes 0, that is, if θ and φ are independent and, thus,

E
[
1
n

∂2ℓ(θ, φ; xn)
∂θ∂φ

]
−−−→
n→∞

0 . (10)

In this case, the ML estimates θ̂ and φ̂ are asymptotically indepen-
dent as well. A simple SPRT as defined in (5) where φ is replaced
by φ̂ is then asymptotically equivalent to that when φ is known.
If θ̂ and φ̂ are not asymptotically independent, however, the test
procedure will not satisfy the long-run error rates implied by α

and β . As a remedy, the sampling error of φ̂ must be taken into
account.

Eq. (9) can be further simplified based on large-sample ML the-
ory, showing that it is asymptotically equivalent to the following
expression (see Appendix A and Cox, 1963, for details):

nIθθ (θ1 − θ0)
[
θ̂ −

1
2 (θ0 + θ1)

]
, (11)
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where Iθθ denotes the (θ , θ ) element or submatrix of the ex-
pected Fisher information matrix I(θ, φ) for sample size n = 1,
assuming observations to be independent and identically dis-
tributed.

For simplification, Cox (1963) suggested to base the sequential
test procedure on a monotonic transformation of (11) obtained
by dropping the multiplicative constant Iθθ (θ1 − θ0) (see also
Wetherill, 1975, p. 60),

Tn = n
[
θ̂ −

1
2 (θ0 + θ1)

]
, (12)

where θ̂ is the ML estimate of θ based on xn. This test statistic has
to be computed after any nth observation, and stopping bound-
aries corresponding to the constant likelihood-ratio boundaries of
the SPRT (Eq. (2)) are given by

Vθθ

θ1 − θ0
log

(
β

1 − α

)
< Tn <

Vθθ

θ1 − θ0
log

(
1 − β

α

)
. (13)

In (13), Vθθ denotes the (θ , θ ) element of the inverse of the
expected unit Fisher information, that is, V = I(θ, φ)−1. In many
cases, the analytical derivation of the expected Fisher information
is infeasible. Thus, for practical purposes, it can be replaced by the
observed Fisher information I(θ̂ , φ̂), that is,

I(θ̂ , φ̂) = −
1
n
H(θ̂ , φ̂) , (14)

where H(θ̂ , φ̂) is the Hessian matrix of second-order partial
derivatives of the log likelihood function, evaluated at the ML
estimates.

As an element of the inverse of the unit Fisher information, Vθθ

(or, when using the observed information matrix, Vθθ ) denotes
the variance of the ML estimate θ̂ based on a single observation
(cf. Ly, Marsman, Verhagen, Grasman, & Wagenmakers, 2017).
Thus, the threshold values in (13) are adjusted based on the preci-
sion with which the test-relevant parameter is estimated, thereby
correcting for the uncertainty that results from the necessity to
estimate the unknown nuisance parameter φ.

Cox’s test, henceforth referred to as sequential maximum like-
lihood ratio test (SMLRT), satisfies the long-run error rates α and
β for testing hypotheses about θ without making explicit assump-
tions about the nuisance parameters φ (Cox, 1963; Wetherill,
1975). As it is based on asymptotic ML theory, however, the
approximations involved in the derivation of the formulae cannot
be expected to work sufficiently well for small samples. Hence,
the proposed sequential test requires a sufficiently large initial
sample (Cox & Roseberry, 1966). Otherwise, it is not ensured
that the Taylor series expansion in (9) is valid or that the ob-
served Fisher information I(θ̂ , φ̂) provides a good approximation
of the expected Fisher information I(θ, φ) (Hu & Phillips, 1999).
Nevertheless, even though the initial sample size needs to be
sufficiently large, we show below that the SMLRT still requires on
average much smaller sample sizes than Neyman–Pearson tests
without compromising error probability control.

The practical implementation of the SMLRT for MPT models
is straightforward with MPT software such as, for example, mul-
tiTree (Moshagen, 2010) or MPTinR (Singmann & Kellen, 2013).
After any nth observation, the ML estimate θ̂ can easily be com-
puted with these software packages. Additionally, Vθθ can be
computed from software output based on the estimated standard

error of θ̂ , SEθ̂ . Since SEθ̂ is the (θ , θ ) element of
[
nI(θ̂ , φ̂)

]−1/2
, it

follows that Vθθ = n(SEθ̂ )
2.

3. Sequential MPT analysis

3.1. Case 1: Simple hypothesis

As a running example, consider a psychometric experiment
administered to an individual participant in a clinical assessment

Fig. 1. A simple multinomial processing tree model for a perception experiment
with a two-alternative forced-choice test. d = probability to detect the stimulus;
g = probability to guess correctly.

situation. Assume we are interested in the individual’s percep-
tual abilities. Specifically, we want to assess whether or not the
participant is able to detect a visual stimulus of a given intensity.

The experiment is carried out as follows: In the style of clas-
sical experiments on visual thresholds (Blackwell, Pritchard, &
Ohmart, 1954) and decision processes underlying visual percep-
tion (Swets, Tanner, & Birdsall, 1961), the participant is presented
with a visual stimulus in one of two defined temporal intervals
in each trial. A stimulus typically used in such experiments is a
flash of light displayed on a screen (for 100 ms, say) with a certain
diameter and magnitude (that is, luminous intensity). Following
each trial, the participant is prompted to decide in which of the
two intervals the stimulus was presented. Thus, the perceptual
performance is measured in a two-alternative forced-choice test
(2AFC).

If the participant detects the stimulus, they will answer cor-
rectly. If they do not detect the stimulus, however, they might
still give a correct answer by guessing the interval in which
the stimulus was presented. Thus, the performance in the 2AFC
is diluted by guessing processes which do not represent actual
perceptual abilities (Swets et al., 1961). In order to assess these
directly, the processes underlying response behavior in the 2AFC
can be disentangled by means of an MPT model.

Fig. 1 displays the simplest instance of an MPT model for the
paradigm under consideration. In each trial, participants either
enter a state of detection (with probability d) and choose the
correct answer, or they do not detect the stimulus (1− d). In this
state of uncertainty, they have to guess which of the intervals
contained the stimulus. Thus, they can either guess correctly
(with conditional probability g) or incorrectly (1 − g).

Formally, the probability of each branch j (j = 1, . . . , J) leading
to response category k (k = 1, . . . , K ) in a binary MPT model is
defined as

pjk(Θ) = cjk
S∏

s=1

θ
ajks
s (1 − θs)bjks , (15)

where Θ = (θ1, . . . , θS) represents the vector of parameters in
the model denoting the (conditional) link probabilities along the
branches, with Θ ∈ Ω = [0, 1]S . The count variables ajks and
bjks indicate how often a parameter θs (or its complement 1 − θs,
respectively) occurs in a branch, while cjk denotes the product
of fixed parameter values along each branch (Hu & Batchelder,
1994).

The probability of each category k as a function of the model
parameters is the sum of all branch probabilities ending in cate-
gory k,

pk(Θ) =

J∑
j=1

pjk(Θ) . (16)

For the observed category frequencies nK
= (n1, . . . , nK ),

∑K
k=1 nk

= N , the resulting likelihood function is then given by

L(Θ; nK ) = N!

K∏
k=1

[pk(Θ)]nk

nk!
. (17)
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Fig. 2. A: The black line denotes the Operating Characteristic (OC) function for a sequential probability ratio test (SPRT) on H0: d = 0 versus H1: d = .10 with
α = β = .05. B: The black line denotes the Average Sample Number (ASN) function of the respective SPRT. Grey dots denote simulated estimates of OC and ASN for
the given test, based on 10,000 replications per estimate.

For parameter interpretation, any statistical modeling requires
the model fitted to the data to be identifiable. In case of an MPT
model, this means that Θ ̸= Θ ′ implies that p(Θ) ̸= p(Θ ′), for
all Θ , Θ ′

∈ Ω . In other words, a model is globally identifiable if
any specific set of model-consistent category probabilities corre-
sponds to a unique set of parameter values (Bamber & van Santen,
2000).

In our example, the MPT model contains two parameters:
Θ = (d, g). In a balanced and completely randomized design,
it is reasonable to assume that guessing in a 2AFC cannot be
systematically ‘‘biased’’ towards a correct or incorrect response.
Therefore, we fix the guessing parameter a priori, g = .50. Thus,
according to (16) the probability of a correct response is given by

pc(d) = d + (1 − d) · .50 , (18)

while the probability of an incorrect response is given by 1 −

pc(d), since there are only two observed response categories.
The restricted model is identifiable, but since K ′

= S ′, with
K ′ denoting the number of independent categories and S ′ the
number of free parameters, it is saturated and does not allow
for tests of goodness of fit. It is still possible, however, to test
hypotheses about free parameters in a saturated model.

To assess the participant’s ability to detect the visual stimu-
lus, we want to test the following hypotheses on the detection
parameter d in our MPT model: H0: d = 0 versus H1: d > 0. In
other words, is the response behavior based entirely on guessing
or can the participant detect the stimulus at least sometimes? To
control the probabilities of decision errors, we request that the
test accepts H1 with probability α = .05 if d = 0, and H0 with
probability β ≤ .05 if d ≥ .10. To this end, we test the simple
hypothesis that d = d0 := 0 versus the simple alternative that
d = d1 := .10.

In a classical analysis, we would sample N observations from
the participant and test whether our MPT model with two re-
stricted parameters ΘR2 = (d = 0, g = .50) fits the data
worse than a model where d remains unrestricted, that is, ΘR1 =

(d, g = .50). As the two models are nested, the test is based
on the difference of the respective fit statistics, ∆PDλ, where
PDλ denotes any power divergence statistic defined by λ, for
example, the log-likelihood ratio statistic G2 if λ = 0 or Pear-
son’s χ2 statistic if λ = 1. Under the null hypothesis defined
above, ∆PDλ

∼ χ2(1) holds asymptotically, irrespective of the
PDλ statistic chosen (Read & Cressie, 1988). Thus, if P(χ2(1) ≥

∆PDλ) < α, we decide in favor of the hypothesis d ≥ .10.
In this example, a power analysis is straightforward. The mod-

els under H0 and H1 imply certain category probabilities. A

common standardized effect size measure for the discrepancy
between expected proportions under two hypotheses is Cohen’s
w (Cohen, 1992). In a single-tree MPT model, w is given by

w =

√ K∑
k=1

(p1k − p0k)2

p0k
, (19)

where pik denotes the probability of category k under hypothesis
i = 0, 1. Based on (18) and (19), the expected effect size in our
example with d0 = 0 and d1 = .10 is w = 0.10, denoting a
small effect. Thus, a one-tailed asymptotic test of the hypothesis
that d = d0 versus d = d1 with error probabilities α = β = .05
requires approximately N = 1083 observations (Faul et al., 2009).

Since we are dealing with simple hypotheses, the SPRT pro-
vides a most efficient alternative. Let pi = pc(di), then the
likelihood given hypothesis i, according to (17), is

L(di; nc) =

(
N
nc

)
pnci (1 − pi)N−nc , (20)

where nc denotes the observed number of correct responses.
Thus, our hypotheses can be tested by means of an SPRT by
continuing to sample observations from the participant as long
as

β

1 − α
<

pnc1 (1 − p1)N−nc

pnc0 (1 − p0)N−nc
<

1 − β

α
(21)

and terminating as soon as one of the inequalities is violated, thus
accepting either H0 or H1.

Based on formulae derived by Wald (1947), it is straightfor-
ward to approximate functions describing the test procedure’s
properties (see Appendix B for details). Specifically, we can an-
alytically determine the procedure’s probability to accept the
alternative hypothesis (the so-called Operating Characteristic, OC)
as well as the expected sample size at termination (the so-called
Average Sample Number, ASN) as a function of the true value
of the parameter d. The respective functions of the SPRT in this
example are depicted in Fig. 2. Additionally, we simulated the
SPRT for the given hypotheses to demonstrate how well the
procedure’s properties are approximated in practice.1 The results
are denoted by the grey dots in Fig. 2. Except for a slight under-
estimation of the ASN when the true value lies between d0 and
d1, the analytical functions approximate the simulated estimates
almost perfectly.

1 R scripts for this and all following simulations as well as all simulated raw
data are available from https://osf.io/98erb/.

https://osf.io/98erb/
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Fig. 3. A multinomial processing tree model for a perception experiment with two stimulus magnitudes (high versus low luminous intensity) and a two-alternative
forced-choice test. dh = probability to detect the stimulus with high magnitude; dl = probability to detect the stimulus with low magnitude; g = probability to
guess correctly.

As the results show, the SPRT not only controls error probabil-
ities as accurately as Neyman–Pearson tests do, it does so notably
more efficiently. For any true value d, the expected sample size
at termination is substantially smaller than the sample size de-
termined by an a priori power analysis for the given hypotheses
(N = 1083). When d equals d0 or d1, the expected sample size of
the SPRT is approximately N = 545, that is, almost 50% smaller.
Moreover, if the true parameter value is notably larger than spec-
ified by the hypothesis, the test will require even lower sample
sizes to make a decision. Classical analysis, in contrast, requires
the a priori defined sample size irrespective of the true value.
Thus, for the test of a simple hypothesis in a single-parameter
MPT model, the SPRT is a highly efficient alternative to classical
inference procedures.

3.2. Case 2: Composite hypothesis with a single nuisance parameter

In practical applications of cognitive psychometrics as well
as in experimental settings, parameter tests in MPT models will
rarely be on absolute parameter values as in Case 1. It is much
more common to test equality or order constraints on model
parameters to compare cognitive processes under different condi-
tions or with different stimulus material. The challenge with this
kind of parameter tests, however, is that they typically imply tests
of composite hypotheses.

Consider the following extension of the simple psychometric
experiment introduced in Case 1. Instead of the absolute per-
ceptual ability, we now want to assess the testee’s perceptual
sensitivity. Specifically, we manipulate physical features of the
visual stimulus presented and assess whether the participant’s
ability to detect the stimulus differs between conditions (see
Blackwell et al., 1954, for a similar experimental procedure). To
this end, the stimulus is now presented in two different mag-
nitudes (low versus high luminous intensity). As in Case 1, we
want to test the detection processes directly by means of an MPT
analysis of the individual’s performance in the 2AFC.

Fig. 3 depicts the extended MPT model for Case 2. The model
now comprises two processing trees, one for each stimulus mag-
nitude. We still assume unbiased guessing of the correct response
in the 2AFC, that is, g = .50 for each stimulus type. However,
to test whether the manipulation of stimulus magnitude affects
the detection probability, the model now contains two detection
parameters, dh (high magnitude) and dl (low magnitude). We
want to test the hypotheses H0: dh = dl versus H1: dh > dl, as
the probability to detect the stimulus should be higher for high
stimulus magnitude than for low magnitude.

To incorporate parametric order constraints into a binary MPT
model, it is straightforward to reparameterize the model such
that the new model satisfies all assumptions of binary MPT mod-
els and is statistically equivalent to the original model (Knapp &
Batchelder, 2004): By restructuring the processing tree for low-
intensity stimuli and introducing a new parameter ξ (Fig. 4), we
can express dl in terms of dh:

dl = ξdh . (22)

Fig. 4. Reparameterization of the second processing tree depicted in Fig. 3 for
the order constraint dh > dl . dh = probability to detect the stimulus with
high magnitude; ξ = ratio of the probability to detect the stimulus with low
magnitude to dh; g = probability to guess correctly.

The reparameterized model, just as the original model, contains
two unknown parameters, Θ = (dh, ξ ), both of which are free to
vary in the entire parameter space Ω = [0, 1]. Our hypotheses
are then reformulated in terms of ξ , that is, H0: ξ = ξ0 (ξ0 = 1)
and H1: ξ = ξ1 (ξ1 < 1). Thus, our hypotheses are about the ratio
of detection probabilities for low and high stimulus magnitude.

It is easy to see that these hypotheses are composite as the
probability distribution of our data depends both on ξ , which is
specified by the hypotheses, and dh, which is unknown. This is a
particular problem for a Neyman–Pearson test of the hypotheses,
as the effect size and, in turn, the power of the test also depend
on both parameters.

If an MPT model includes more than one tree, the model
becomes a joint MPT model. For T > 1 trees, Cohen’s effect size
measure w generalizes to

w =

√ T∑
t=1

πt ·

Kt∑
kt=1

(p1kt − p0kt )2

p0kt
, (23)

where Kt denotes the total number of categories in tree t (t =

1, . . . , T ) and πt the proportion of the total sample size N as-
signed to tree t . Resembling Case 1, p1kt denotes the predicted
category probabilities for category k of tree t according to H1.
However, since H0 is composite, the corresponding p0kt category
probabilities are now obtained by fitting the H0 model (with dh
free) to these H1 probabilities such that w becomes a minimum
(Erdfelder, Faul, & Buchner, 2005). Note that (23) reduces to (19)
iff T = 1.

Assume ξ0 = 1.00 and ξ1 = .75. Then the expected effect
size for dh = .70 in a balanced design with πhigh = πlow =

.50 is approximately w = 0.11 according to (23). An a priori
power analysis for this effect size reveals a required sample size
of N = 892 observations for a one-tailed asymptotic test with
α = β = .05. If, however, dh = .50, the expected effect size is
only w = 0.07 and the required sample size for the same test is
more than twice as large, that is, N = 2248.
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To ensure a sufficiently powered test in the context of a
composite hypothesis, a rational strategy would be to assume a
conservative value of dh such that the resulting test has power
1 − β ≥ .95 for any dh in a reasonable range. However, this can
be inefficient and demand very large sample sizes.

Instead, we can analyze the data sequentially by means of the
SMLRT. Let ph = dh · (1 − dh) · .50 denote the probability of a
correct response in a trial with high stimulus magnitude under
both hypotheses, and pli = ξidh+(1−ξidh) · .50 the corresponding
probability for low stimulus magnitude under hypothesis i. The
likelihood function is then given by

L(ξi, dh; n1, n2, n3, n4) =
N!∏4

k=1 nk!
pn1h (1 − ph)n2p

n3
li (1 − pli)n4 ,

(24)

where the nk (k = 1, 2, 3, 4;
∑4

k=1 nk = N) denote observed
frequencies of correct versus false responses for high versus low
stimulus magnitude, respectively.

If Eq. (10) is satisfied in our case (with θ = ξ and φ = dh),
that is, if d̂h and ξ̂ are asymptotically independent, the SMLRT
reduces to a simple SPRT where dh is replaced by d̂h at each step.
However, since

∂2ℓ(ξ, dh; n1, n2, n3, n4)
∂ξ∂dh

=
n3

(ξdh + 1)2
−

n4

(ξdh − 1)2
(25)

and considering that in a balanced design, E(n3) = N/2 · [ξdh +

(1 − ξdh) · .50] and E(n4) = N/2 − E(n3), we see that

E
[
1
N

∂2ℓ(ξ, dh; n1, n2, n3, n4)
∂ξ∂dh

]
= −

ξdh
2(1 − ξ 2d2h)

. (26)

The term in (26) no longer depends on N and, thus, (10)
is not satisfied if neither ξ nor dh are equal to 0. Hence, as
suggested by Cox (1963), the test should be based on (12) with
stooping boundaries (13), where θ is replaced by ξ . To calculate
the expected Fisher information in order to obtain Vξξ at each
step, observed cell frequencies in the Hessian matrix H(ξ, dh)
are replaced by the expected cell frequencies, as was done in
(26). Additionally, when ξ1 < ξ0, the inequalities in (13) must
be inverted. This will be the case for order constraints in MPT
models, where the null hypothesis typically denotes ξ0 = 1, such
as in our example.

Unlike in the SPRT for simple hypotheses, there are no an-
alytical formulae for the SMLRT’s properties for composite hy-
potheses. Therefore, we simulated the SMLRT for the perception
experiment in Case 2 (1) to assess whether long-run error rate
control works as expected and (2) to compare the expected
sample size required by the SMLRT with that of the classical
Neyman–Pearson test.

The simulations were carried out in the statistical computing
environment R (R Core Team, 2019). We generated participants’
responses according to the model depicted in Figs. 3 and 4 and
analyzed them sequentially by means of the SMLRT defined by
(12) and (13) with inverted boundaries. Estimates of ξ were
computed with the R package MPTinR (Singmann & Kellen, 2013).

We simulated data for different true values of dh (dh =

.70, .50) and ξ (ξ = 1.00, .75, .50). Under the null hypothesis,
ξ0 was always equal to 1, while under the alternative hypothesis,
ξ1 was equal to .75 or .50. Furthermore, we varied the initial
sample size of the sequential procedure (Nmin). As the SMLRT is
based on large-sample approximations, a too small sample size
might negatively affect the procedure and compromise its error
rates (Cox & Roseberry, 1966). As a simple strategy to find a
suitable number, the initial sample was therefore defined to be

25%, 40%, or 50% of the sample size required by a corresponding
Neyman–Pearson test (NNP ).2

In each step, the sample size was increased by +2, one ob-
servation for each stimulus magnitude, until a threshold was
reached. Threshold values were chosen such that α = β = .05.
For each parameter combination, we replicated the test procedure
1000 times.

The results are displayed in Fig. 5. It contains the empirical
error rates (α′ and β ′) and the required sample sizes as a function
of dh, the true value of ξ , that is, ξ = ξ0 or ξ = ξ1, and
the initial sample size. Error bars for the error rates denote 95%
exact confidence intervals (Clopper & Pearson, 1934). The sample
size distributions are displayed as boxplots. Black dots denote
outliers (data points further than 1.5 times the inter-quartile
range below or above the first or the third quartile, respectively),
grey dots represent the means of the distributions, that is, the
ASN. Dashed lines denote the nominal error rates and the sample
sizes required by a corresponding Neyman–Pearson test.

The left part of Fig. 5 shows the results for ξ1 = .50, the right
part displays results for ξ1 = .75. For all parameter combinations,
β ′ substantially undercuts the nominal level. At the same time,
except for a slight upward deviation when dh = .50 and the
initial sample size is small, α′ adheres to the nominal level.
Moreover, the SMLRT controls error probabilities notably more
efficiently than a corresponding Neyman–Pearson test: The ASN
is on average 45% smaller. Across all parameter combinations, the
test terminates with a sample size smaller than NNP in 94% of the
cases.

In almost all of the simulated scenarios, the SMLRT shows
satisfying results for an initial sample size of Nmin = .25·NNP . With
increasing Nmin, the test procedure becomes more conservative
and less efficient. However, the increase in ASN is only slight
and still below the sample size required by the Neyman–Person
test. Concluding from our results, an initial sample size of 25%
of a corresponding Neyman–Pearson test is a reasonable starting
point to efficiently control long-run rates of statistical decision
errors for parameter tests in MPT models with a single unknown
nuisance parameter.

3.3. Case 3: Composite hypothesis with several nuisance parameters

Commonly, MPT models contain several unknown parameters.
Thus, hypotheses about single parameters typically involve more
than one nuisance parameter. To illustrate that the SMLRT natu-
rally extends to this case, consider the following variation of our
psychometric experiment.

To assess potential biases involved in the decision process as
well as perceptual processes, the experiment is now based on a
Yes/No test. That is, in each trial either a stimulus (target) or no
stimulus (lure) is presented. For each trial, the participant has to
indicate whether they detected a stimulus (‘‘Yes’’) or not (‘‘No’’).
As in Case 2, stimuli are light flashes presented in two different
magnitudes (high versus low luminous intensity).

Fig. 6 displays the MPT model for Case 3. It contains three
detection parameters denoting the probability to detect a stim-
ulus with high magnitude (dh), a stimulus with low magnitude
(dl), or the absence of a stimulus (dn). Additionally, it contains
the parameter g , which represents the conditional probability to
guess ‘‘Yes’’ in a state of uncertainty.

With K ′ < S ′, the model is not identifiable. Thus, we need
to restrict at least one of the parameters. As g no longer refers
to guessing correctly but rather guessing that a stimulus was

2 To increase computational efficiency, each simulated trajectory started with
Nmin = .25 · NNP and was then reanalyzed with Nmin = .40 · NNP and Nmin =

.50 · NNP .
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Fig. 5. Empirical error rates and sample size distributions of the sequential maximum likelihood ratio test (SMLRT) as a function of the hypothesis tested, the true
detection parameter dh , and the data-generating scenario. Error bars denote 95% Clopper–Pearson exact confidence intervals (Clopper & Pearson, 1934). Black dots
in the boxplots denote outliers (data points more than 1.5 times the inter-quartile range below or above 1st or 3rd quantile). Grey dots denote mean sample sizes.
Dashed lines represent nominal error rates and sample sizes required by a corresponding Neyman–Pearson (NP) test.

Fig. 6. A multinomial processing tree (MPT) model for a perception experiment with two stimulus magnitudes (high versus low) and a Yes/No test. dh = probability
to detect the stimulus with high magnitude; dl = probability to detect the stimulus with low magnitude; dn = probability to detect a lure trial in which no stimulus
was presented; g = probability to guess ‘‘Yes’’.

presented, it seems reasonable not to restrict it a priori. For
the given experiment, we rather assume that the absence of a
stimulus should be equally salient and detectable as the presence
of a high-magnitude stimulus. Thus, we will assume that dn = dh.
The restricted model is identifiable and saturated.

To test whether the participant is sensitive to the manip-
ulation of stimulus magnitude in the new paradigm, we will

reparameterize the model as we did in Case 2 (see Fig. 4), such
that dl = ξdh. Again, we test the hypotheses H0: ξ = ξ0 (ξ0 = 1)
versus H1: ξ = ξ1 (ξ1 < 1). This time, the power of a hypothesis
test on ξ not only depends on dh but also on the bias to respond
‘‘Yes’’, g .

Similar to Case 2, the effect size for this case can be calculated
based on (23), this time with T = 3 and πhigh = πlow = πlure =
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Fig. 7. Empirical error rates and sample size distributions of the sequential maximum likelihood ratio test as a function of the hypothesis tested, the true detection
parameter dh , the true guessing parameter g , and the data-generating scenario. Error bars denote 95% Clopper–Pearson exact confidence intervals (Clopper & Pearson,
1934). Black dots in the boxplots denote outliers (data points more than 1.5 times the inter-quartile range below or above 1st or 3rd quantile). Grey dots denote
mean sample sizes. Dashed lines represent nominal error rates and sample sizes required by a corresponding Neyman–Pearson (NP) test.

.33. When testing ξ0 = 1.00 versus ξ1 = .75 while assuming
dh = .70 and g = .50 for the nuisance parameters under H1
(while treating dh and g as free parameters under H0), the effect
size is w = 0.09. A classical one-tailed asymptotic test with
α = β = .05 would thus require N = 1335 observations.
However, if the participant has a slight bias to respond with ‘‘Yes’’
under uncertainty, g = .60, the effect size is reduced to w = 0.08
and the same test would require about N = 1752 observations.
For g = .40, in contrast, the required sample size reduces to about
N = 1059. Also taking into account different possible values of
dh would further increase the number of possible power analyses,
thus illustrating the difficulty of determining a reasonable sample
size for classical hypothesis tests in MPT models with more than
one unknown nuisance parameter.

In the SMLRT, in contrast, we only need ξ̂ and Vξξ (or SEξ̂ ), as
the test is based on (12) and (13). The uncertainty with respect to
the actual values of the nuisance parameters is taken into account
implicitly, since Vξξ and, correspondingly, the standard error of ξ̂
depend in general on the precision and values of all parameter
estimates. In the same vein, further increasing the complexity
of the model in terms of the number of nuisance parameters or
experimental conditions would not alter the general procedure
for testing hypotheses on ξ .

As shown in the previous simulation, however, the SMLRT
requires a sufficiently large initial sample size. If the sample size
is too low, error rates may be inflated. If it is too large, the test
may be less efficient. To illustrate that the required initial sample
size may depend on the values of the nuisance parameters, we

simulated the SMLRT for Case 3. The settings of the simulation
were essentially identical to those in the previous simulation.
Additionally, we varied the guessing parameter g = .40 versus
g = .60. As the experiment in Case 3 comprises three stimulus
categories (high versus low magnitude targets and lures), the
sample size was increased by +3 in each step, one observation
per stimulus category. For each parameter combination, 1000
replications were simulated.

The results are displayed in Fig. 7. For all simulated parameter
combinations, the test shows very low rates of Type 1 errors. At
the same time, however, the ASN in this case is still on average
38% smaller than the Neyman–Pearson sample size. The empirical
β ′ closely approximate the nominal error rate for almost all
parameter combinations. Only when dh = .70 and g = .60, the
test of ξ1 = .50 yields too large β ′ when the initial sample size
is smaller than .50 · NNP . Across all parameter combinations, the
SMLRT is on average 34% more efficient than a Neyman–Pearson
test and terminates with a smaller sample in 88% of the cases.

As our simulations show, the general procedure of the SMLRT
extends to models with more than one unknown nuisance param-
eter. However, we also see the importance of a sufficiently large
initial sample size in this case. When both dh and g are large,
the model predicts very low probabilities of ‘‘No’’ responses. In
case of a large expected effect such as ξ1 = .50, the classical
Neyman–Pearson test is already quite efficient. Consequently, an
initial sample based on 25% or 40% of NNP is so small that the
risk of extremely small cell frequencies is high. In such a case,
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the asymptotic approximations upon which the SMLRT is based
cannot be expected to hold (cf. Cox & Roseberry, 1966).

For example, if dh = .70 and g = .60, a classical one-tailed
test requires N = 174 observations per tree to test ξ0 = 1 versus
ξ1 = .50 with α = β = .05. Thus, an initial sample size of
25% of the Neyman–Pearson sample size would comprise N = 44
observations per tree only. Conditional on the assumed values of
dh and g , the expected number of incorrect responses for high-
magnitude targets in this case is only 44·(1−.70)·(1−.60) = 5.28.
Not surprisingly, the large-sample approximations on which the
SMLRT is based do not hold in such a situation. This could be
remedied by further increasing the initial sample size. In that
case, however, the test would no longer be more efficient than
a classical test procedure.

It is important to note, however, that a case in which the
classical test is already so efficient that the SMLRT cannot sat-
isfy the nominal error rates with smaller samples is of practical
relevance only if we can place high confidence in the parameter
assumptions we make. Under uncertainty, we would rather rely
on conservative assumptions to ensure sufficient power. If we
follow this advice, the SMLRT will in general be more efficient.

4. Discussion

Hypothesis tests on parameter constraints in MPT models of-
ten rely on NHST, thus ignoring statistical power. Although power
analyses have been worked out for categorical data (Erdfelder
et al., 2005) and are readily available in existing software (e.g.,
Faul et al., 2009; Moshagen, 2010), practitioners typically face
two challenges. First, to determine the effect size for a hypothesis
test on a single parameter in a multi-parameter MPT (or other)
model, the population values of all other parameters must be
known or specified a priori based on theoretical considerations
that may or may not hold. As a remedy, one can perform multiple
power analyses for a range of reasonable parameter values and
then choose the most conservative one. However, this strategy
often fosters a second challenge for practitioners, namely, that
the required sample sizes may become very large and practically
infeasible.

As a remedy, in the present article we suggest to rely on
sequential tests, an efficient alternative to classical statistical
methods for hypothesis tests in MPT models. Sequential hypoth-
esis tests control error probabilities of statistical decisions just as
classical Neyman–Pearson tests do. Yet, at the same time, they are
based on continuous monitoring of the data as they are sampled
and terminate as soon as the data contain sufficient evidence for
one hypothesis vis-à-vis the other. Thus, on average, sequential
tests require notably smaller samples than classical methods that
are based on a priori defined sample sizes (Schnuerch & Erdfelder,
2019).

We introduced the SPRT (Wald, 1947) and demonstrated how
it is easily applied to analysis of MPT models with a single free
parameter. We showed that it is substantially more efficient
than classical Neyman–Pearson tests, requiring about 50% smaller
samples on average. However, although there are applications of
single-parameter MPT models in the literature (e.g., models for
the randomized response technique; see Ulrich, Schröter, Striegel,
& Simon, 2012), MPT models that are commonly used in cognitive
psychology typically contain more than one parameter, many of
which are nuisance parameters that need to be estimated.

Therefore, we introduced an extension of the SPRT suggested
by Cox (1963) for sequential tests of composite hypotheses. In the
SMLRT, the likelihood ratio is constructed based on ML estimates
of both the test-relevant and the nuisance parameters. The se-
quential procedure is then corrected for the additional estimation
uncertainty, such that the resulting test does not exceed long-
run error rates α and β . Hence, the test procedure controls error

probabilities without requiring knowledge or a specification of
the exact values for the unknown nuisance parameters in the
statistical model.

We illustrated how the SMLRT can be used to test hypotheses
on MPT model parameters with existing MPT software. Essen-
tially, the procedure merely requires the ML estimate θ̂ of the
test-relevant parameter and the expected Fisher information (or
the standard error of the estimate). Moreover, the SMLRT does
not only remedy the problem of unknown nuisance parameters, it
also increases efficiency of hypothesis testing. We demonstrated
by means of simulations that the SMLRT requires on average 34%
(Case 3) to 45% (Case 2) smaller samples to satisfy the same or
even lower error rates compared with classical Neyman–Pearson
tests even when these are based on the true, data-generating val-
ues of the nuisance parameter (which is an unlikely assumption
in practice).

The sequential approach can be particularly useful in individ-
ual assessments (e.g., clinical diagnosis). As part of Bill
Batchelder’s proposal of cognitive psychometrics – that is, build-
ing a bridge between the fields of mathematical psychology and
psychometrics – he strongly promoted the use of MPT models
in the context of psychological assessment (Batchelder, 1998).
For instance, he identified the great potential for substantive
MPT model applications as diagnostic tools in clinical settings
(Batchelder & Riefer, 1999; Riefer, Knapp, Batchelder, Bamber,
& Manifold, 2002). However, Batchelder also acknowledged the
obvious drawback of reduced estimation precision and low sta-
tistical power as a consequence of the small number of data
points on the individual level. The sequential approach we pro-
mote in this article may facilitate the application of MPT models
in individual assessments whenever it is necessary to make
decisions about the presence or absence of specific cognitive
symptoms while controlling error probabilities. More generally,
we hope that the SMLRT for MPT models will further contribute
to the increasing number of substantive applications in cognitive
psychometrics.

Apart from individual assessment, sequential analysis is also
particularly useful for efficient MPT modeling of data on the
group level when each participant provides only a single data
point (e.g., Heck, Thielmann, et al., 2018; Klauer et al., 2007;
Moshagen et al., 2014, 2012; Schild et al., 2019). This setting
has the advantage that the MPT analysis need not be built into
the experimental procedure or software because the data can
be analyzed after data collection for each participant. It is thus
easily implemented in practice, thereby providing an attractive
alternative to classical methods in terms of a more efficient and
less costly control of error probabilities.

4.1. Limitations

The approaches presented in this article are so-called unre-
stricted sequential procedures that do not have a definite upper
bound of sample size. Hence, although the test is on average more
efficient than classical procedures, there is a potential risk that
the data provide inconclusive evidence in single cases, meaning
that the test will continue for a long time without reaching one
of the two boundaries. Concluding from our simulation results,
this risk is small (approximately 6% in Case 2, 12% in Case 3).
Nevertheless, this risk potentially limits its applicability in indi-
vidual analysis to situations in which the number of data points
is not restricted a priori. Think, for example, of an experimental
paradigm assessing long-term episodic memory processes (e.g.,
Batchelder & Riefer, 1986). Such a paradigm typically includes
a learning phase and a test phase. The number of possible data
points in the test phase is limited by the number of items learned
during the first phase. Thus, sequential analysis during the test
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phase will make sense only if it requires no more than the
number of learned items. As this obviously cannot be guaranteed,
the unrestricted sequential approach is not appropriate for such
applications.

Second, the SMLRT for composite hypotheses is based on
large-sample approximations (Cox, 1963). Therefore, as the sim-
ulation results in Case 3 showed, the method may fail when
initial sample sizes are too small (see also Cox & Roseberry, 1966;
Wetherill, 1975). The relevance of a sufficiently large initial sam-
ple size increases with model complexity, as does the required
sample size at termination. The practical challenge is of course
to determine a suitable initial sample size for the sequential pro-
cedure on a priori grounds. If the sample size is too small, error
rates might be seriously inflated. If it is too large, on the other
hand, the test’s efficiency is reduced (although our simulations
demonstrated that the increase in ASN due to larger initial sample
sizes is only slight).

As a remedy, we suggest to search for a model-specific min-
imum sample size by means of an a priori power analysis and
Monte Carlo simulations. Of course, this will again entail assump-
tions about reasonable true parameter values of the nuisance
parameters. However, the consequences of an overly conservative
assumption in the context of a sequential test are much less se-
vere than for a standard test procedure. If the initial sample size is
chosen too large, the evidence provided by the data may already
be compelling very early during data collection, meaning that the
test procedure will stop immediately. Thus, the SMLRT will be
more efficient than a correspondingly conservative classical test,
in which one cannot use optional stopping even if the data clearly
speak in favor of one of the hypotheses.

Third, sequential approaches assume that observations are
independent and identically distributed (i.i.d.). This assumption
is reasonable for sequential analyses of data generated by an
individual provided that the experimental design prevents con-
taminations of the data by exercise effects, fatigue effects, or
order effects. The i.i.d. assumption is also plausible in model
applications where each participant provides a single data point
only. If, however, MPT models are applied to aggregate data of re-
peated observations of multiple individuals, the i.i.d. assumption
may be questioned and is often implausible (Smith & Batchelder,
2008). If there is heterogeneity in items or participants, ignoring
the hierarchical structure might bias parameter estimates and
statistical tests (Heck, Arnold, & Arnold, 2018). Thus, if parameter
tests are performed at the group level based on data aggre-
gated across items and participants, the sequential approaches
promoted herein may not be suitable. This issue is especially
critical for sequential tests if the data are collected in a batch-wise
fashion. For instance, if one first collects 100 observations from a
person that does perform extraordinarily well, the sequential test
may already indicate a decision, thereby ignoring data from other
participants that perform worse.

Finally, it is important to keep in mind that both SPRT and
SMLRT address problems of hypothesis testing, not estimation. In
this article, we focused on efficiency in statistical decision making
exclusively. If this is the primary concern, SPRT and SMLRT are ap-
propriate alternatives to classical methods. However, if the aim is
to estimate a parameter as precisely as possible, these sequential
procedures are not suitable. Whereas efficiency requires to make
a decision with as few observations as possible, high precision
of parameter estimates is achieved with as many observations
as possible (without optional stopping depending on the current
value of the estimates). In fact, parameter estimates following
a sequential hypothesis test may be biased (Whitehead, 1986).
Thus, the sequential approach promoted herein should only be
used if the aim is in fact to make an efficient statistical decision,
for example, in psychological assessments.

4.2. Conclusion

Multinomial processing tree models have proven useful in
many areas of cognitive and social psychology as tools to measure
and disentangle latent cognitive processes. As repeatedly argued
and demonstrated by Bill Batchelder, they have great potential es-
pecially for psychometric purposes, for example, in the context of
individual diagnostics in clinical settings (e.g., Batchelder, 1998;
Batchelder & Riefer, 1999; Riefer et al., 2002). We introduced
sequential test procedures proposed by Cox (1963) and Wald
(1947) and illustrated how they can be adapted to MPT model
analysis. By means of simulations, we demonstrated the excellent
properties of the sequential approach for testing hypotheses on
MPT model parameters both in the absence and presence of
nuisance parameters. Thereby, we hope to improve efficiency of
statistical inference in MPT modeling, particularly in the con-
text of individual assessments (i.e., cognitive psychometrics) and
other settings with scarce resources.

Appendix A. Sequential maximum likelihood ratio tests

To show that (11) is asymptotically equivalent to (9), consider
that according to ML theory, the expected Fisher information
matrix for a sample of size n is given by

nI(θ, φ) = E [−H(θ, φ)] = E

⎡⎢⎢⎣−

⎛⎜⎜⎝
∂2ℓ(θ, φ; xn)

∂θ2

∂2ℓ(θ, φ; xn)
∂θ∂φ

∂2ℓ(θ, φ; xn)
∂φ∂θ

∂2ℓ(θ, φ; xn)
∂φ2

⎞⎟⎟⎠
⎤⎥⎥⎦

(27)

where H(θ, φ) denotes the Hessian matrix of second-order partial
derivatives. Accordingly, nIθθ and nIθφ denote the (θ , θ ) and
(θ , φ) element (or submatrix) of this matrix. Moreover, θ̂ , φ̂

asymptotically satisfy the following equation (Cox, 1963):

n
[
Iθθ (θ̂ − θ ) + Iθφ(φ̂ − φ)

]
=

∂ℓ(θ, φ; xn)
∂θ

. (28)

Thus, writing (9) in terms of (27) and (28) gives

n(θ1 − θ0)Iθθ (θ̂ − θ ) + n(θ1 − θ0)Iθφ(φ̂ − φ) −

1
2 (θ1 − θ0)(θ1 + θ0 − 2θ )nIθθ − (θ1 − θ0)(φ̂ − φ)nIθφ (29)

which by application of simple calculus yields

n(θ1 − θ0)
[
Iθθ (θ̂ − θ ) + Iθφ(φ̂ − φ)

−
1
2Iθθ (θ1 + θ0 − 2θ ) − Iθφ(φ̂ − φ)

]
= n(θ1 − θ0)Iθθ (θ̂ − θ −

1
2θ1 −

1
2θ0 + θ )

= nIθθ (θ1 − θ0)
[
θ̂ −

1
2 (θ1 + θ0)

]
.

(30)

Appendix B. Properties of the sequential probability ratio test

To approximate the functions describing power and expected
sample size of the sequential probability ratio test (SPRT) for a
test of hypotheses about d in the MPT model displayed in Fig. 1
(with g = .50), we can use formulae derived by Wald (1947). For
any given d0, d1, α, and β , the power of the SPRT is a function of
the true value d. Let Ψd denote the probability to accept H1 given
a certain true value d, then

Ψd ≈

1 −

(
β

1 − α

)h

(
1 − β

α

)h

−

(
β

1 − α

)h , (31)
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where h is the non-zero root of the equation

p
(
p1
p0

)h

+ (1 − p)
(
1 − p1
1 − p0

)h

= 1 (32)

with p and pi denoting the true and predicted probability of a
correct response under hypothesis i, respectively, pi = di + (1 −

di) · .50.
It is easy to see that if d = d1, which means that p = p1, the

non-zero root of (32) is h = −1,

p1
p0
p1

+ (1 − p1)
(1 − p0)
(1 − p1)

− 1

= p0 + (1 − p0) − 1
= 0 ,

(33)

which, as expected, yields

Ψd=d1 =

1 −

(
1 − α

β

)
(

α

1 − β

)
−

(
1 − α

β

)
=

α + β − 1
β

·
β(1 − β)

βα − (1 − β)(1 − α)

= 1 − β.

(34)

In the same vein, if d = d0 the non-zero root of (32) is h = 1,

p0
p1
p0

+ (1 − p0)
(1 − p1)
(1 − p0)

− 1

= p1 + (1 − p1) − 1
= 0 ,

(35)

which yields

Ψd=d0 =

1 −

(
β

1 − α

)
(
1 − β

α

)
−

(
β

1 − α

)
=

1 − α − β

1 − α
·

α(1 − α)
(1 − α)(1 − β) − αβ

= α .

(36)

In a second step, the expected sample size at termination as a
function of the true value d can be approximated by

Ed(N) ≈

Ψd log
(
1 − β

α

)
+ (1 − Ψd)log

(
β

1 − α

)
p log

(
p1
p0

)
+ (1 − p)log

(
1 − p1
1 − p0

) , (37)

where Ψd is given by (31).
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