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Abstract
For several years, the public debate in psychological science has been dominated by what is referred to
as the reproducibility crisis. This crisis has, inter alia, drawn attention to the need for proper control of
statistical decision errors in testing psychological hypotheses. However, conventional methods of error
probability control often require fairly large samples. Sequential statistical tests provide an attractive
alternative: They can be applied repeatedly during the sampling process and terminate whenever there is
sufficient evidence in the data for one of the hypotheses of interest. Thus, sequential tests may
substantially reduce the required sample size without compromising predefined error probabilities.
Herein, we discuss the most efficient sequential design, the sequential probability ratio test (SPRT), and
show how it is easily implemented for a 2-sample t test using standard statistical software. We
demonstrate, by means of simulations, that the SPRT not only reliably controls error probabilities but also
typically requires substantially smaller samples than standard t tests and other common sequential
designs. Moreover, we investigate the robustness of the SPRT against violations of its assumptions.
Finally, we illustrate the sequential t test by applying it to an empirical example and provide recom-
mendations on how psychologists can employ it in their own research to benefit from its desirable
properties.

Translational Abstract
Fostered by a series of unsuccessful attempts to replicate seemingly well-established empirical results,
the reproducibility crisis has dominated the public debate in psychological science for several years.
Apart from increasing awareness for the consequences of questionable research practices, the crisis has
drawn attention to the shortcomings of currently dominating statistical procedures. Critically, conven-
tional methods that allow for control of both Type I and Type II statistical error probabilities—� and �,
respectively—often require sample sizes much larger than typically employed. Therefore, we promote an
alternative that requires substantially smaller sample sizes on average while still controlling error
probabilities: sequential analysis. Unlike conventional tests, sequential tests are designed to be applied
repeatedly during the sampling process and terminate as soon as there is sufficient evidence for one of
the hypotheses of interest. Herein, we discuss the most efficient sequential design, the sequential
probability ratio test (SPRT), and show how it is easily implemented for the common t test to compare
means of 2 independent groups. We demonstrate by means of simulations that the SPRT reliably controls
error probabilities and requires smaller samples than standard t tests or other common sequential designs.
Moreover, we investigate the robustness of the SPRT against violations of its assumptions. Finally, we
illustrate the sequential t test by applying it to an empirical example and provide concrete recommen-
dations on how psychologists can employ it in their own research to benefit from its desirable properties.

Keywords: hypothesis testing, efficiency, statistical error probabilities, sequential analysis, sequential
probability ratio test

Critical tests of theories and hypotheses are at the heart of
psychological science. A good theory makes clear-cut predictions
that can be evaluated empirically, for example, in an experiment.
Empirical tests of such predictions often take the form of binary

decisions: Based on the data, do we accept the hypothesis of
interest or do we reject it, thereby corroborating or refuting the
underlying theory? The most common statistical procedure in
psychology to decide between conflicting hypotheses is usually

This article was published Online First September 9, 2019.
X Martin Schnuerch and X Edgar Erdfelder, Department of Psychol-

ogy, School of Social Sciences, University of Mannheim.
This research was supported by a grant from the Deutsche Forschungs-

gemeinschaft (DFG, GRK 2277) to the Research Training Group “Statis-
tical Modeling in Psychology” (SMiP). Parts of this article were presented
at the 60th Conference for Experimental Psychologists (2018) in Marburg,

Germany. The authors thank Daniel W. Heck for helpful discussions and
comments on an earlier version of the manuscript.

Correspondence concerning this article should be addressed to Martin
Schnuerch or Edgar Erdfelder, Department of Psychology, School of
Social Sciences, University of Mannheim, Schloss, 68131 Mannheim,
Germany. E-mail: martin.schnuerch@psychologie.uni-mannheim.de or
erdfelder@psychologie.uni-mannheim.de

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

Psychological Methods
© 2019 American Psychological Association 2020, Vol. 25, No. 2, 206–226
ISSN: 1082-989X http://dx.doi.org/10.1037/met0000234

206

https://orcid.org/0000-0001-6531-2265
https://orcid.org/0000-0003-1032-3981
mailto:martin.schnuerch@psychologie.uni-mannheim.de
mailto:erdfelder@psychologie.uni-mannheim.de
http://dx.doi.org/10.1037/met0000234


referred to as null-hypothesis significance testing (NHST). NHST
has been harshly criticized in the past, and rightly so, as it is an
inconsistent hybrid between two seemingly similar but, in fact,
substantially different statistical theories: the theory of signifi-
cance testing proposed by Fisher and the theory of statistical
decision making by Neyman and Pearson (e.g., Bakan, 1966;
Berger, 2003; Bredenkamp, 1972; Cumming, 2014; Dienes,
2011; Gelman, 2016; Gigerenzer, 1993, 2004; Goodman, 1993;
Sedlmeier, 1996; Wagenmakers, 2007). Notwithstanding these
criticisms, NHST has been the dominant procedure in behavioral
science for decades. However, fostered by the reproducibility
crisis in psychology (Asendorpf et al., 2013; Earp & Trafimow,
2015; Maxwell, Lau, & Howard, 2015; Open Science Collabora-
tion, 2015; Pashler & Wagenmakers, 2012; but see Gilbert, King,
Pettigrew, & Wilson, 2016), there is an increasing awareness of the
pitfalls of NHST and the importance of rigorous control of deci-
sion errors in hypothesis testing.

According to Neyman and Pearson (1933), two types of errors
can occur when deciding between a null hypothesis (H0) and an
alternative hypothesis (H1): The null hypothesis is rejected when
it is true (Type I error), or it is accepted when it is false (Type II
error). By convention, the probabilities of Type I and II errors are
denoted by � and �, respectively. The complement of �, 1 � �, is
referred to as the statistical power of the test. As outlined in the
statistical guidelines of the Psychonomic Society (2012), “it is
important to address the issue of statistical power. . . . Studies with
low statistical power produce inherently ambiguous results be-
cause they often fail to replicate.” Despite such pleas, however, the
issue of power has largely been neglected in psychological re-
search so far. A possible reason is that the most common statistical
procedure to control � and � (i.e., the Neyman-Pearson procedure)
often requires sample sizes much larger than those typically em-
ployed (Erdfelder, Faul, & Buchner, 1996). To illustrate, a two-
tailed two-sample t test requires a total sample size of N � 210 to
detect a mean difference of medium size (i.e., Cohen’s d � .50)
with error probabilities � � � � .05. In contrast, the common
overall sample size for the same test is only about N � 60 in
prototypical journal publications, resulting in power values slightly
lower than 1 � � � .50 (Cohen, 1962; Sedlmeier & Gigerenzer,
1989).

To avoid costly hypothesis tests, researchers may be tempted to
apply NHST to small, underpowered samples first, followed by
recursive increases in sample size until a significant test result is
observed. This misleading use of NHST is known as data peeking,
a questionable research practice that boosts chances of gaining a
significant outcome at the cost of error probability control (Sim-
mons, Nelson, & Simonsohn, 2011). In this article, we promote a
proper alternative statistical method that was developed more than
70 years ago: sequential analysis (Wald, 1947). Unlike data peek-
ing, with its associated risk of inflating Type I errors, sequential
hypothesis tests have been designed specifically to control error
probabilities while also allowing for smaller sample sizes than the
Neyman-Pearson approach (Lakens, 2014). As computational
tools have improved substantially over the past decades, these
sequential tests are nowadays easily implemented and combined
with standard statistical software. We empirically demonstrate the
beneficial properties of one particular sequential test, namely, the
sequential probability ratio test (SPRT; Wald, 1947). Moreover,
we show that on top of controlling for decision error probabilities,

this test is more efficient than both the Neyman-Pearson approach
and other common sequential designs. Importantly, we also assess
the robustness of the proposed sequential test against violations of
its assumptions.

The key feature of sequential tests, as opposed to standard test
procedures, is that the sample size N is not determined a priori but
a random variable that depends on the sequence of observations.
Thereby, sequential methods may substantially reduce the sample
size required to make a decision whenever the available data
clearly support one hypothesis over the other. At the same time,
they allow for explicit control of decision error probabilities. Thus,
sequential statistical methods form an attractive alternative to
standard test procedures. Despite their desirable properties and
potential benefits to the field of psychological science, however,
sequential methods have largely been ignored in experimental
research so far (Botella, Ximénez, Revuelta, & Suero, 2006; Lak-
ens, 2014; Lang, 2017).

One helpful step in this direction was recently taken by Schön-
brodt, Wagenmakers, Zehetleitner, and Perugini (2017). These
authors proposed a sequential method based on Bayesian infer-
ence, referred to as sequential Bayes factors (SBFs). By means of
simulation, they demonstrated the properties of SBFs in the con-
text of testing hypotheses about mean differences of two indepen-
dent groups (two-sample t test). Specifically, they simulated pop-
ulations with a specific mean difference � and examined the
simulation estimate of the expected sample size and the relative
frequencies of Type I and Type II errors of SBFs for different prior
specifications and stopping criteria. Based on their simulations,
they compared the SBF design with two other designs: the stan-
dard fixed-sample Neyman-Pearson t test (misleadingly referred to
as the null hypothesis significance test with power analysis
[NHST-PA]) and the group sequential (GS) design (Lang, 2017;
Proschan, Lan, & Wittes, 2006).

In the GS design, the data are analyzed at predefined stages
during the sampling process. If, in any stage, the test statistic
exceeds a critical value, sampling is terminated. These critical
values, in turn, are calculated based on linear spending functions of
� and � such that the overall error rates of the procedure can be
controlled. Thus, while reducing the average sample size required
for a statistical decision, the GS design does not compromise
predefined error probabilities (Lakens, 2014). Nevertheless,
Schönbrodt et al. (2017) showed that SBFs need smaller samples
on average than both the Neyman-Pearson and the GS design in
order to achieve the same error probabilities. Thus, they concluded
that “SBF can answer the question about the presence or absence
of an effect with better quality . . . and/or higher efficiency . . . than
the classical NHST-PA approach or typical frequentist sequential
designs” (p. 335).

We appreciate the contribution of Schönbrodt et al. (2017) in
raising awareness for the advantages of sequential designs and
thoroughly assessing the long-run properties of SBFs compared
with the Neyman-Pearson and GS designs. However, their com-
parison did not include the arguably most efficient sequential
design: the SPRT (Wald, 1947). We seek to close this gap and
include the SPRT in the comparison. Moreover, as Schönbrodt et
al. noted themselves, there is no means (and, in fact, no intention)
in the standard SBF design to control statistical decision error
probabilities explicitly. Herein, we will show that the SPRT not
only allows for more efficient hypothesis tests about mean differ-
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ences than SBFs and GS, it also exerts strict control of decision
error probabilities.

In the following section, we briefly outline the basic concept of
the SPRT, with particular focus on its application to the t-test
scenario, elaborating on differences between the SPRT and other
sequential designs. Next, we evaluate, by means of simulation, the
properties of the SPRT with regard to empirical rates of incorrect
decisions. Thereafter, we empirically compare SPRT, GS, and
SBFs in terms of efficiency, that is, the expected sample size
required to reach a decision. Subsequently, we explore the effects
of violations of various assumptions underlying the test proce-
dures. We then demonstrate the SPRT using an empirical example
and discuss implications as well as limitations of our study and the
SPRT. Finally, we provide recommendations on how to apply the
proposed sequential t test in research practice.

The Sequential Probability Ratio Test

Statistical tests usually assume samples of a fixed size N. Se-
quential statistical tests dispense with this requirement. Instead, the
data are analyzed sequentially, and a rule is applied to make one of
three possible decisions at any new step of the sampling process:

1. Accept H1 and reject H0.
2. Accept H0 and reject H1.
3. Continue sampling.

(1)

Whenever one of the first two decisions is made, the sampling
process is terminated. In case of the third decision, another obser-
vation follows and the decision rule is applied again. This process
is repeated until either one of the first two decisions is made. By
implication, the sample size is not a fixed constant defined a priori
but a random variable that depends on the sequence of observa-
tions.

To set up a sequential test, a decision rule needs to be defined.
The choice of this rule determines the properties of the test,
namely, the conditional probabilities of correct decisions and the
so-called average sample number (ASN).1 Assume that H0: � � �0

is tested against H1: � � �1, where � denotes the true parameter (or
parameter vector) in the underlying population. We shall impose
on the test the following requirements (Wald, 1947):

P(accept Hi | �i) � �1 � � (i � 0)
1 � � (i � 1)

, (2)

where P(accept Hi | �i) denotes the probability to correctly accept
hypothesis Hi when �i is true. A sequential test is said to be of
strength (�, �) when it satisfies these requirements. For all tests of
a given strength, a test is better if its ASN is smaller. Let E�(N | S)
denote the expected sample size N for a sequential test S when �
is true. A test S= is better than an alternative test S of equal strength
(�, �) if E�0

�N � S�� � E�0
�N � S� and E�1

�N � S�� 	 E�1
�N � S�, or

E�0
�N � S�� 	 E�0

�N � S� and E�1
�N � S�� � E�1

�N � S�. If there is a test
S= such that for any alternative test S of equal strength
E�i

�N � S�� 	 E�i
�N � S�, i � 0, 1, then S= is called an optimum test,

because no other test of equal strength can exceed S= in terms of
efficiency. For many applications, the choice of a decision rule to
achieve an optimum test can be quite complex. However, for the
special case of testing a simple null hypothesis against a simple
alternative hypothesis, as in the given case, the SPRT has been
proven to be optimal (Matthes, 1963; Wald & Wolfowitz, 1948).

Abraham Wald introduced the SPRT in the 1940s as one of the
first formal theories of sequential test procedures. Let f�X � �i�
denote the probability (density) function for the observed data X
given the population parameter specified in Hi, i � 0, 1. At any
mth stage of the sampling process, compute a test statistic that
conforms to the likelihood ratio, that is, the ratio of probability
densities of the observed data X � x1, . . . , xm under H1 versus H0,
that is,

LRm �
f(x1, . . . , xm | �1)
f(x1, . . . , xm | �0)

. (3)

The likelihood ratio indicates how likely the observed data occur
under one hypothesis vis-à-vis the other. It is thus a measure of
relative evidence in the data for the specified hypotheses.2 As a
basis for statistical inference, it has desirable properties:

Consistency: The likelihood ratio is consistent, that is, if one of the
specified hypotheses is in fact true, it will converge to either zero or
� as the sample size increases toward infinity. Note that not all tests
actually behave in this reasonable way. The p value in an NHST, for
example, will not converge to 1 if the null hypothesis is true, which is
why it is not suitable as a measure of evidence for the null (Rouder,
Speckman, Sun, Morey, & Iverson, 2009).

Independence from stopping rule: Inference based on likelihood ratios
is not affected by sampling plans and stopping rules (Etz, 2018). In
NHST, statistical inference is based on the p value. This value is
computed in reference to the sampling distribution of the test statistic
under the null hypothesis and depends on the sample size. However,
if the sample size is determined by what has been observed (optional
stopping), the sampling distribution is likely to differ from the ex-
pected distribution under the assumption of a fixed sample size
(Anscombe, 1954). Hence, its approximate properties (such as the p
value) are unlikely to hold. Consequently, inference that is based on
the assumption of a fixed sample size is affected by the stopping rule.
The likelihood ratio, on the other hand, is independent of the research-
er’s intentions and stopping rule. Thus, it may be computed and
interpreted sequentially (Etz, 2018).

Given these properties, Wald (1945, 1947) defined the follow-
ing sequential test procedure based on the likelihood ratio:

1. Accept H1 and reject H0 when LRm 
 A.

2 . Accept H0 and reject H1 when LRm 	 B.

3 . Sample a new independent observation xm�1

when B � LRm � A. (4)

Wald (1947) showed that this sequential procedure terminates
with probability 1 after a finite number of observations with either
Decision 1 or 2. This implies that A 	 P�accept H1 � �1�⁄
P�accept H1 � �0� and B 
 P�accept H0 � �1� ⁄P�accept H0 � �0�
(Wetherill, 1975). For practical purposes, these inequalities can be

1 Average sample number denotes the average number of observations
per sample, that is, the expected sample size at termination. Wald (1947)
consistently used this expression; thus, we will maintain it as a technical
term throughout the article.

2 The term likelihood usually refers to the likelihood of a hypothesis,
L(H). This is proportional to the probability (density) of the data condi-
tional on this hypothesis: L(H) 	 f(x1, . . . , xn | H). Thus, the likelihood
ratio is usually expressed as a probability (density) ratio (Etz, 2018).
Unlike Wald, however, we will maintain the term likelihood ratio.
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replaced by equalities and, in accordance with the requirements
given in Equation 2, the boundaries may simply be determined by
A � (1 � �)/� and B � �/(1��). The resulting test will be
approximately of strength (�, �): As the test statistic may exceed
one of the boundaries at the point of termination rather than
matching it exactly (a phenomenon called overshooting), the actual
error probabilities of the sequential procedure will, in general, be
lower than � and �. Hence, strictly speaking, the SPRT is an
approximate test, with � and � serving as upper bounds to the error
probabilities.

Importantly, this also holds true for interval hypotheses of the
form H0: � 	 �0 versus H1: � 
 �1 (�0 
 �1) if all other param-
eters of the statistical model are known constants. Like the clas-
sical Neyman-Pearson test, an SPRT based on the simple hypoth-
eses � � �0 versus � � �1 will have its maximum error
probabilities � and � if the true � equals �0 and �1, respectively.
For any other true value � in line with H0: � 	 �0 or H1: � 

�1 (�0 
 �1), the respective error probabilities will be lower (Wald,
1947). Hence, just like Neyman-Pearson tests, SPRTs allow for the
specification of upper-bound error probabilities even if there is no
expectation of the exact value of the parameter of interest, as long
as a minimum (maximum) value can be defined and all other
parameters are constants.

Sequential t Tests

Despite the generality of the SPRT, a test procedure designed
for decisions between simple hypotheses will not be appropriate
for many applications (Wetherill, 1975). To see this, note that a
hypothesis � � �0 on the mean of a normally distributed random
variable would only be simple if the variance �2 was either known
or also specified by the hypothesis. If at least one of the parameters
of the underlying statistical model is unknown, the decision be-
comes one between complex composite hypotheses to which the
SPRT defined by Equations 3 and 4 does not apply. To adapt the
SPRT to such hypotheses, Wald (1947) suggested the use of
weight functions to integrate out the unknown parameters from the
statistical model. However, the construction of suitable weight
functions is not trivial. What is more, there is no general method
such that the resulting SPRT satisfies the requirements concerning
error probabilities and efficiency. In fact, the mathematical com-
plexity of setting up suitable test statistics for composite hypoth-
eses might in part be responsible for the widespread neglect of
sequential methods in behavioral research (Botella et al., 2006).

Another way to cope with the problem of unknown parameters
is to replace the sequence of observations in the likelihood ratio
(LRm) by a transformed sequence that no longer depends on the
unknown parameters (Armitage, 1947). For the one-sample test on
the mean of a normal distribution with unknown variance, Barnard
(1949) showed that composite hypotheses about X can be reduced
to simple hypotheses about the well-known t statistic computed
from X. Specifically, the sample observations x1, . . . , xm at stage
m are simply replaced by the corresponding t statistics t2, . . . , tm
based on these data (m 
 2), whose distributions do not depend on
the unknown variance. Rushton (1950), building on previous work
by Cox (1952), showed that an SPRT analogue of the one-sample
t test can be performed by simply considering the ratio of proba-
bility densities for the most recent tm statistic under H1 and H0 at
any mth stage, because

LRm �
f(t2, . . . , tm | H1)
f(t2, . . . , tm | H0)

�
f(tm | dfm, �1) · f(t2, . . . , tm�1 | tm)
f(tm | dfm, �0) · f(t2, . . . , tm�1 | tm)

�
f(tm | dfm, �1)
f(tm | dfm, �0)

.

(5)

In Equation 5, dfm denotes the degrees of freedom and 
i denotes
the noncentrality parameter of the t distribution corresponding to
hypothesis Hi at the mth stage. For two-sided tests, tm can be
substituted by tm

2 , and LRm is thus expressed as the ratio of t2

density functions (Rushton, 1952).
For testing mean differences between two independent samples

with unknown variance (two-sample t test), Hajnal (1961) introduced
an SPRT based upon the same principle. Let � � (�1 � �2)/� denote
the true standardized difference of means of the populations un-
derlying the two groups (i.e., Cohen’s d in the population), with �
representing the common (but unknown) population standard de-
viation. Assume a two-sided test of the hypothesis H0: � � 0
against H1: 
 � d, d � 0. For each step m of the sampling process,
let n1 and n2 be the number of observations in Group 1 and Group
2, respectively, such that m � n1 � n2. If observations from both
populations underlying the groups and at least two different ob-
servations from the same group have been sampled (such that the
sample estimate of the standard error becomes larger than zero),
we compute

tm
2 �� X̄1m � X̄2m

�̂m ·� 1
n1

� 1
n2

�2

, (6)

with the group means X̄1m and X̄2m in step m and the pooled
standard deviation

�̂m ��(n1 � 1) · s1m
2 � (n2 � 1) · s2m

2

n1 � n2 � 2 , (7)

where s1m
2 and s2m

2 denote the group variances estimated from the
observed sample data available in step m.

The likelihood ratio is then derived as the ratio of the noncentral
to the central probability density of tm

2 ,

LRm �
f�tm

2 | dfm, �m�
f�tm

2 | dfm�
, (8)

with dfm � n1 � n2 � 2 and noncentrality parameter

�m � d ·� n1 · n2

n1 � n2
. (9)

Because t2(df) � F(1, df), the ratio in Equation 8 can be
expressed as the ratio of a noncentral to a central F density
function,

LRm �
f�Fm | d1 � 1, d2 � dfm, �m

2 �
f�Fm | d1 � 1, d2 � dfm� , (10)

where Fm � tm
2 and d1 and d2 denote the degrees of freedom of the

F distribution.
Both the t and the F density function are available in the

standard R environment (R Core Team, 2017). Thus, an SPRT for

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

209SEQUENTIAL PROBABILITY RATIO T TEST



a one- or two-sample t test can be conducted easily with R by
iteratively computing the ratios given in Equation 5 for a one-sided
test, and Equation 10 for a two-sided test, for each stage m of the
sequential sampling process. A workable R script to apply the
SPRTs described in this section can be downloaded from the Open
Science Framework (https://osf.io/4zub2/).

Hajnal (1961) proved that a sequential procedure based on
Equation 10 with the boundary values A � (1 � �)/� and B �
�/(1 � �) results in a valid SPRT as described in the previous
paragraph. Thus, the two-sample SPRT t test (henceforth referred
to as Hajnal’s t test) constitutes an easy to implement alternative
to Neyman-Pearson tests as well as to SBFs and GS for the
scenario addressed in Schönbrodt et al. (2017). In addition, it also
provides full control of the error probabilities � and �. However,
the formal proof of the optimum property of the SPRT as well as
analytical methods to determine the ASN of the procedure only
apply to simple hypotheses and independent observations (Cox,
1952; Köllerström & Wetherill, 1979). Although Hajnal’s t test
transforms the composite hypothesis about X to a simple hypoth-
esis about t, the sequence of t values is no longer composed of
independent elements. Hence, neither the formal proof of the
procedure’s optimum character nor analytical solutions to deter-
mine the ASN hold for this test (Hajnal, 1961).

Therefore, it is of great practical as well as theoretical interest to
empirically assess the properties of Hajnal’s t test and examine (a)
the degree to which the actual error rates approximate the upper
bounds � and �, (b) the expected sample size and relative effi-
ciency compared with Schönbrodt et al.’s (2017) SBFs and the GS
design, and (c) the robustness of these results when basic assump-
tions are violated. In the following section, we elaborate on the
differences between the SPRT and the two alternative sequential
test procedures addressed in this article.

Two Alternative Sequential Designs: GS and SBFs

As outlined before, the GS is based on a priori planned stops
during the sampling process. These stops include a number of
interim tests and a final test, for which the sample size (Nmax) may
be defined by a power analysis. For example, a researcher might
decide to perform three interim tests after n � 25, 50, and 75
observations, say, before performing a final test at Nmax � 100
observations. Based on the overall error rates of the procedure, �
and �, critical values for the fixed-sample test statistic are calcu-
lated for each stop using linear spending functions (Lakens, 2014).
The researcher will then sample 25 observations and compare the
test statistic at this point with the critical values for the first
analysis. If there is strong evidence in the data and the statistic
exceeds a critical value, sampling is terminated and the respective
hypothesis is accepted. Otherwise, the researcher has to continue
sampling until the next stop is reached. This continues until Nmax,
where the test will finally accept one of the hypotheses.

Due to the interim analyses and the resulting possibility to
terminate early, the GS requires on average fewer observations
than Neyman-Pearson tests with the same error probabilities
(Lang, 2017; Schönbrodt et al., 2017). Importantly, it allows for
explicit control of these probabilities and the specification of a
maximum number of observations required. As the interim anal-
yses have to be planned a priori, however, the GS is less flexible
than the SPRT or SBFs. Whereas the latter allow for termination

after possibly any single additional observation, a GS test can only
terminate at one of the planned stops. Hence, although it has the
advantage of a definite upper limit to the required sample size, it
can be expected that the GS is, on average, less efficient than
SPRT and SBFs (see Schönbrodt et al., 2017).

The test statistic of the SBF design is the Bayes factor (Jeffreys,
1935, 1961; Wrinch & Jeffreys, 1921). Like the SPRT test statistic,
the Bayes factor is a likelihood ratio. Thus, it is a measure of
relative evidence in the data for the specified hypotheses (Kass &
Raftery, 1995):

BF10 �
f(x1, . . . , xn | H1)
f(x1, . . . , xn | H0)

. (11)

Importantly, the likelihoods specified in this ratio are marginal
likelihoods, that is, the probability density of data under hypothesis
H is given by

f(x1, . . . , xn | H) � ��H
fH(x1, . . . , xn | �)pH(�)d�. (12)

In Equation 12, �H is the parameter space specified by hypoth-
esis H, fH(x1, . . . , xn | �) is the probability density of the data given
a certain point � in �H, and pH(�) is the prior distribution of the
parameters � under hypothesis H. Thus, the likelihood is inte-
grated over all possible values in the parameter space defined by
the hypothesis, weighted according to the respective prior func-
tions. In other words, the likelihood ratio in the Bayes factor is a
weighted average of likelihood ratios for all possible parameter
values (Morey & Rouder, 2011; Rouder et al., 2009).

In their simulation of the SBFs, Schönbrodt et al. (2017) used
the default prior specifications as proposed by Jeffreys (1961) and
Zellner and Siow (1980), which were further developed by Rouder
et al. (2009) for the standard Bayesian t test. Specifically, prior
distributions are defined for the unknown population variance, the
grand mean, and the effect size, that is, the true standardized mean
difference �. The likelihood under the null hypothesis is the
likelihood for the constant � � 0, as in the SPRT. Under the
alternative hypothesis, however, the specified prior for the effect
size is not a constant but a Cauchy distribution whose shape is
defined by a scale parameter r. Consequently, the Bayes factor
tests the point hypothesis H0: � � 0 against the alternative H1: ��
Cauchy(r).3 With increasing scale parameter, the Cauchy distribu-
tion gets flatter, thus putting more weight on larger effect sizes.
The default values suggested in the BayesFactor package in R for
the test of a small, medium, or large effect are r � 	2 ⁄2, 1, or 	2,
respectively (Morey & Rouder, 2015).

The likelihood ratios employed in the SPRT and SBFs are
closely related. Unlike in the Bayesian t test, however, the alter-
native hypothesis in Hajnal’s t test specifies a constant d rather
than a distribution. Figure 1 illustrates how the probability density
of observed data under the alternative hypothesis changes when
marginalizing across an effect size prior distribution: Assume a
hypothesis test on the mean difference of two normally distributed
variables with some common, known variance. The probability
density of an observed mean difference 
̂ under the null hypothesis

3 Note, however, that both hypotheses are composite hypotheses because
of the unknown within-groups variance for which a common standard prior
is assumed, known as Jeffreys prior, and the unknown grand mean, for
which a uniform prior is specified (Rouder et al., 2009).
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H0: � � 0 is given by the gray curve. Let the alternative hypothesis
be H1: � � d, d � 0.8. Then, the solid black line denotes the
respective probability density of an observed mean difference
under this hypothesis. Now assume a sample effect size of 
̂ � 1
is observed. A likelihood ratio is simply the ratio of densities at the
point of observed data (denoted by the gray dots in Figure 1). For
the alternative hypothesis d � 0.8, this ratio is thus computed
between the solid black and the gray curve at 
̂ � 1. In the Bayes
factor, however, f�
̂ � H1� is a weighted average of the probability
densities under each possible � in H1: � � Cauchy(r), with r � 1
in this example. Consequently, the resulting probability density
function (dashed curve) is less peaked than the density function
based on the hypothesis d � 0.8. Thus, the ratio for the observed
effect is larger under the latter than under the former hypothesis.

Generally speaking, a likelihood ratio based on point hypotheses
will be more sensitive to data that are likely under the hypotheses.
Consequently, if we assume that there either is no effect or a
specific effect of size � � d, then the SPRT should be a more
sensitive and more efficient test to discriminate between these two
hypotheses than SBFs.

It should be noted, however, that this sensitivity comes at a cost:
If the true effect differs greatly from what was expected (
̂ � 3,
say), the likelihood ratio for the point alternative hypothesis will be
less pronounced than for the diffuse hypothesis. As a consequence,
in such a case, the SPRT is likely to be less efficient, whereas an
SBF based on a diffuse prior will be more robust. A similar point
was recently made by Stefan, Gronau, Schönbrodt, and Wagen-
makers (2019). According to these authors, an SBF based on an

informative prior is more efficient (or less error-prone) when the
true effect lies within the prior’s highest density region. At the
same time, however, the informative prior might be at a disadvan-
tage if the true effect greatly deviates from this region. In other
words, there is a general trade-off between peak efficiency when
the true effect matches the expectation, and robustness when it
does not. Conceptually, the effect size specified in the SPRT is the
most extreme case of an informed prior. Hence, Stefan et al.’s
conclusions also apply to the SPRT.

Statistical Error Rates of SPRT, GS, and SBFs

As outlined above, in practical applications, the SPRT will be an
approximate test procedure, where � and � serve as upper bounds
to the actual error rates (Wald, 1947). Thus, we empirically ex-
amined the properties of Hajnal’s t test by means of simulations,
focusing on the empirical rates of wrong decisions in relation to
the specified upper bounds � and �. Additionally, we simulated a
GS test and SBFs with default Cauchy priors to assess their error
rates under the same population scenarios.

Note, however, that whereas Hajnal’s t test and the GS design
are based on the assumption of a fixed underlying effect and the
same nominal error rates, the default priors in the SBFs make quite
different assumptions. In a Cauchy distribution with scale param-
eter r, 50% of the area under the curve lie in the interval [�r, r].
Thus, the default scale parameters used by Schönbrodt et al.
(2017), r � 	2 ⁄2, 1, and 	2, correspond to expected median
absolute effect sizes of � � 0.7, 1, and 1.4, respectively. The
absolute effect sizes corresponding to a small, medium, or large

0.0

0.2

0.4

0.6

0.8

−3 −2 −1 0 1 2 3
Observed Effect Size

D
en

si
ty

Figure 1. Effects of marginalizing across an effect-size prior, assuming some known variance. The gray line
denotes the probability density of an observed effect size under the null hypothesis � � 0. The solid black
line denotes the probability density of observed data under the alternative hypothesis � � d, d � 0.8. The dashed
line denotes the density function when marginalized corresponding to the hypothesis � � Cauchy(1). Gray dots
denote the densities under either hypothesis for an observed effect of size 
̂ � 1.
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effect in Hajnal’s t test as well as GS and Neyman-Pearson tests,
in contrast, are � � 0.2, 0.5, and 0.8, respectively (Cohen, 1988).
Thus, our results—like those of Schönbrodt et al.—should not be
generalized to other SBF designs with different prior distributions
(e.g., informative priors; Stefan et al., 2019) or other population
scenarios (e.g., random effects).

Settings of the Simulation

We drew random samples from two normal distributions with
common variance �2 � 1 and means �1 � � (� � 0, 0.2, 0.4, 0.5,
0.6, 0.8, 1, 1.2), and �2 � 0. Starting at n1 � n2 � 2, we applied
Hajnal’s t test to the sample data. The sample of each group was
then increased by �1 until the LR exceeded one of the boundary
values A � (1 � �)/� or B � �/(1 � �). In addition to the true
effect size �, the settings of the test procedure were varied in terms
of expected effect size d according to H1 and typical values of the
nominal error probabilities � and �, that is, � � .01 versus .05, and
� � .05 versus .10. For each combination of true effect size �,
expected effect size d, �, and �, 10,000 replications were simu-
lated.

In a second step, we simulated a GS with four looks (three
interim analyses and one final test) for the same population sce-
narios and nominal error rates. Sample sizes for each step and the
respective critical values were calculated with the gsDesign pack-
age in R (K. Anderson, 2014).

Third, we replicated Schönbrodt et al.’s (2017) simulation of
the SBFs: Random samples from two normally distributed
populations with true mean difference � were drawn, and the
Bayes factor was computed during the sampling process until a
threshold value was reached. The scale parameter of the Cauchy
prior in the Bayes factor was systematically varied using the
default values specified in the BayesFactor package, that is, r �
	2⁄2, 1, or 	2, respectively (Morey & Rouder, 2015). The thresh-
old values for the sequential procedure were set to a critical Bayes
factor between 3 and 30 in steps of 1. As in the previous simulation
of Hajnal’s t test, each simulated trajectory started with an initial
sample size of n1 � n2 � 2 that was gradually increased in equal
steps for both groups until a decision threshold was reached.4

Results

Columns 1 to 4 of Table 1 contain the percentages (and 95%
confidence intervals [CIs]) of decision errors of Hajnal’s t test as
a function of the true effect �, the expected effect d under H1, and
the specified error probabilities � and �. In Columns 5 to 8, the
same information is presented for the simulated GS with four
looks. The remaining columns provide the result for the SBFs as a
function of the true effect �, the scale parameter r of the Cauchy
prior (representing the expected median absolute effect size under
H1), and the threshold value for the Bayes factor.

For the sake of brevity, we display only a limited range of effect
sizes here, namely, � � 0, 0.2, 0.5, and 0.8, as these represent the
absence of an effect and the effect sizes commonly referred to as
small, medium, and large (Cohen, 1988). In a similar vein, we
report only a subset of SBF threshold values, namely, 5, 10, and
30. The full table of results as well as reproducible scripts and all
data can be downloaded from https://osf.io/4zub2/. The ASN (as
well as the 50th, 75th, and 95th quantile) for Hajnal’s t test, GS,

and SBFs corresponding to the results displayed in Table 1 may be
obtained from the Appendix (Table A1).

The first three rows of Table 1 depict the observed percentages
of incorrect decisions for the true population scenario � � 0 (i.e.,
empirical Type I error rates). Obviously, Hajnal’s t test provides
excellent � error control. The empirical rates closely approximate
the nominal probabilities (.01, .05). In fact, as can be inferred from
the 95% Clopper-Pearson exact CIs (Clopper & Pearson, 1934),
67% of the observed Type I error rates are significantly lower than
the specified �. Thus, as expected, Hajnal’s t test approximates
nominal error rates nicely, with the specified � serving as an upper
bound.

We observe a similar result for the GS: The empirical error rates
nicely approximate the nominal �. In some cases, the estimate is
slightly above the nominal level, but this is likely caused by
sampling error. Hence, with respect to Type I error control, the GS
and the SPRT procedures are comparable and perform well.

In contrast to the SPRT and GS test procedures, the observed �
rates of the SBFs vary as a function of the Bayes factor threshold
value and the scale parameter r. For a low threshold, the proba-
bilities of falsely rejecting a true null hypothesis are much larger
than what researchers typically aim at. Although these error rates
decrease for higher thresholds (e.g., about .06 for a Bayes factor of
10), there is no means in the standard SBF design to control the �
probability a priori.

The remaining rows of Table 1 correspond to true population
scenarios with � � 0. Here, the percentages represent observed
rates of accepting a false null hypothesis (Type II error). The
probability of committing such an error is commonly referred to as
�; however, this definition is somewhat vague. More precisely, �
is the probability to accept a false null hypothesis if the specified
alternative hypothesis � � d is in fact true (see Equation 2). As the
results in Table 1 demonstrate, Hajnal’s t test provides excellent
control of the error probability in this situation: The empirical rates
nicely approximate but never exceed the specified � (.05, .1). In
fact, the actual error rates are significantly smaller than the nom-
inal � in 92% of the cases. Thus, as expected, � denotes an upper
bound of the test procedure’s probability to accept a false null
hypothesis when the alternative is correctly specified.

Notably, this result also holds when the true effect does not
match the expected effect but is in fact larger. As Table 1 shows,
the probability that Hajnal’s t test incorrectly accepts a false null
hypothesis converges to zero when � � d. It is a popular critique
by proponents of the Bayesian approach that a precise prediction
of the effect size is not possible (e.g., Schönbrodt et al., 2017).
Even in this case, however, a test can be defined with � as an upper
bound to the Type II error probability (Wald, 1947). By specifying
a minimum relevant effect dmin and setting up Hajnal’s t test for
the simple hypothesis H0: � � 0 against H1: � � dmin, the
probability of incorrectly accepting a false null hypothesis will
never exceed � if 
 
 dmin. Of course, if the true effect is notably
smaller than dmin then the probability of accepting H0 will exceed
�. However, if dmin is specified based on which effect sizes are
practically relevant, one would actually prefer the test to maintain

4 To find an acceptable compromise between computational efficiency
and accuracy in the simulations of Hajnal’s test and SBFs, the samples
were increased by �1 until n1 � n2 � 10,000 and by �50 afterward.
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H0 if the true effect falls under this lower bound. Thus, the results
demonstrate that Hajnal’s t test provides reliable, conservative
control of the probabilities to commit a decision error.

It should be noted at this point, however, that a conservative
specification of the effect results not only in conservative error
rates but also in a less efficient test: In the same way as error
rates decrease when the true effect is larger than expected, the
ASN increases (Table A1). This is not surprising, as this re-
flects the trade-off between efficiency and robustness (Stefan et
al., 2019). Importantly, this is also true for the GS and the
classical Neyman-Pearson test. As the effect-size assumption is
the same for all three designs, a conservative estimate will
increase the required sample size for all of them. As Table A1
shows, however, Hajnal’s t test is still more efficient in these
cases. For example, if a small effect is expected (d � 0.2) in
case of a medium true effect (� � 0.5), Hajnal’s t test with � �
� � .05 requires, on average, 194 observations. The GS test
with the same parameters requires, on average, 378 observa-
tions. A classical t test with the same assumptions would even
require 1,302 observations. Hence, Hajnal’s t test is more
efficient not only when the correct effect size is expected but
also when the tests specify a conservative assumption.

As in case of Type I errors, there is no explicit control of Type
II errors in the SBF design. For a threshold Bayes factor of 5, the
empirical error rates exceed typical error rates by far (see also
Schönbrodt et al., 2017). A more reasonable threshold of 10 yields
excellent error probabilities for medium to large effects but not for
small effects (� � 0.2). If a higher threshold is chosen (BF � 30),
the procedure will basically commit no decision errors, even when
the true effect is small. However, this powerful procedure comes
at the cost of efficiency: In the context of small to medium effect
sizes, the expected sample sizes required to reach the decision
threshold can become extremely large (see Table A1). For exam-
ple, for a true effect of size � � 0.2, an SBF assuming a Cauchy
prior with scale r � 	2 ⁄2 requires, on average, 1,120 observations
to reach a threshold of 30. To summarize, the results indicate that
the SBF design—if combined with thresholds representing mod-
erate (BF � 5) or strong evidence (BF � 10)—can be associated
with high error probabilities and lacks a proper means to control
these explicitly.

Relative Efficiency of SPRT, GS, and SBFs

For the test of simple hypotheses, the SPRT’s properties can
be derived analytically and its optimum character has been
proven (Wald & Wolfowitz, 1948). When modified for the case
of a composite hypothesis, however, analytical solutions no
longer exist (Cox, 1952; Hajnal, 1961; Köllerström & Wether-
ill, 1979). Schönbrodt et al. (2017) demonstrated that the SBF
design is more efficient for the two-sample t test scenario than
the GS. However, this comparison did not include the SPRT,
and sensitivity considerations concerning SBFs and SPRT
strongly suggest that if SPRT’s assumptions are met (which was
the case in Schönbrodt et al.’s simulation design), it should be
more efficient. To assess this in more detail, we empirically
juxtaposed Hajnal’s t test with SBFs and GS by means of
simulation.

Settings of the Simulations

A meaningful comparison of different test procedures’ effi-
ciencies requires all tests to satisfy the same error probabilities.
To generate tests of the same strength (�, �), we repeated the
simulation of Hajnal’s t test with the same settings as in the
previous simulation. This time, however, the stopping thresh-
olds A and B were based on the corresponding error rates of the
SBFs. For each condition, the test was based on the correctly
specified effect-size assumption d � � and the empirical � and
� of the SBFs under the same condition.5 In addition, we
calculated the ASN for a GS test with four looks using the
gsDesign package as well as required sample sizes for the
corresponding Neyman-Pearson t test (NNP) with the same error
probabilities. Thus, the four test procedures are of the same
strength and can be compared directly in terms of efficiency.

Note that this simulation represents a favorable scenario for
the SPRT, the GS, and the Neyman-Pearson test, as the true
effect sizes perfectly match the effect-size assumptions. Hence,
the results capture their peak efficiency. If the true effect does
not match the expected effect or if different priors are used in
the SBFs, the results are likely to differ. However, this simu-
lation setting is necessary to keep the error rates constant across
test procedures, which, in turn, is necessary for a meaningful
comparison of efficiency.

Results

The relative efficiency of Hajnal’s t test, the GS, and the
SBFs with default priors can be obtained from Figure 2. It is
based on Figure 4 in Schönbrodt et al. (2017, p. 331), in which
these authors presented their comparison of SBFs and GS.
Figure 2 displays the relative reduction of the ASN of the three
test designs compared with the corresponding Neyman-Pearson
sample size (in % NNP). Not surprisingly, all three sequential
designs are more efficient than the classical Neyman-Pearson t
test. We also replicated the finding of Schönbrodt et al. that the
SBF design (dashed line) is substantially more efficient than the
GS test (dotted line), although the latter assumes the correct
effect size. The mean relative reduction of expected sample size
of the SBFs compared with the corresponding Neyman-Pearson
test is 63%, whereas the mean relative reduction is 50% for the
GS. However, as Figure 2 also reveals, Hajnal’s t test is in fact
even more efficient (solid line): On average, the ASN of
Hajnal’s t test is 67% smaller than NNP. In almost all conditions,
the observed ASN undercuts the corresponding statistics of the
SBFs and the GS.

As can be seen, this difference between SPRT and SBFs is quite
small for medium to large effect sizes, although consistent. Two
mechanisms can explain this small difference:

1. As the true effect further departs from the null, the
likelihood of an observation that is typical under the
null hypothesis decreases quickly. Thus, the expected
change in the likelihood ratio by adding a single ob-
servation increases correspondingly fast. Therefore,

5 In conditions for which the SBFs did not exhibit wrong decisions, �
was set to an arbitrarily small value of 1/50,000.
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both sequential procedures reach a decision on average
after very few observations already (e.g., for � � 1.2,
all ASNs are smaller than 20). Hence, the comparison
is distorted in this context by a floor effect.

2. The extent to which the likelihood ratio exceeds the
stopping values A and B at the point of termination
(overshooting) increases as a function of effect size
(Wald, 1947). Thus, with increasing effect size, the
actual error probabilities of the SPRT further depart
from the specified � and �, resulting in a more con-
servative and slightly less efficient test. Wald conjec-
tured that this loss of efficiency was not of practical
relevance. Nevertheless, it is important to keep in
mind when interpreting the small difference in effi-

ciency between Hajnal’s t test and SBFs in the context
of large effect sizes.

For small to medium effect sizes, in contrast, the discrepancy
in efficiency between Hajnal’s t test and the SBFs is consider-
ably stronger and can reach differences in ASNs of more than
300 observations. Because these are effect sizes that require
very large NNPs, efficiency is of particular interest in this
context. Thus, as our results show, Hajnal’s t test can be an
efficient alternative not only with respect to the Neyman-
Pearson procedure and the GS but also with respect to the
default SBF design proposed by Schönbrodt et al. (2017). What
is more, unlike the latter, Hajnal’s t test additionally allows
for the proper specification of upper bounds to decision error
probabilities, as empirically illustrated in the previous section.
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Figure 2. Relative efficiency of sequential probability ratio test (SPRT), group sequential test (GS), and
sequential Bayes factors (SBFs). The y-axis denotes the reduction in expected sample size of SPRT (solid line),
GS (dotted line) and SBFs (dashed line) compared with a Neyman-Pearson t test with the same error probabilities
in % NNP for different true effect sizes as well as boundaries and prior specifications of the SBFs. Based on
Schönbrodt et al. (2017, Figure 4).
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Robustness of SPRT, GS, and SBFs

So far, we examined Hajnal’s t test under ideal conditions,
that is, when the assumptions underlying the test procedure are
met. This is necessary from a theoretical perspective in order to
investigate the general properties of the test such as error
probability control and efficiency, and also to compare the test
procedure with other designs. However, from a practical point
of view, it is also important to consider scenarios in which these
assumptions are violated.

H. Lee and Fung (1980) already examined the robustness of
Hajnal’s t test under conditions of non-normality and heterosce-
dasticity. Due to computational limitations at the time, how-
ever, their simulations were based on approximations to the
likelihood ratio. In this section, we examine the performance of
Hajnal’s t test as well as the GS and the default SBFs under
conditions of (a) non-normality and (b) heteroscedasticity, as
well as (c) random effects and (d) intentional misuse. For the
sake of parsimony, we restricted the simulations to the nominal
error rates � � � � .05 in Hajnal’s t test and the GS. For the
SBFs, we chose a threshold value of BF � 10 throughout the
simulations. As this value reflects “strong evidence” from a
Bayesian perspective (M. D. Lee & Wagenmakers, 2013), it is
often used as a threshold in practical applications (e.g., Matzke
et al., 2015; Schönbrodt et al., 2017; Wagenmakers et al.,
2015). In each simulation, 10,000 replications per parameter
combination were simulated. All scripts and data are again
available from the Open Science Framework.

Non-Normality

Settings. To investigate the test procedures’ performances
against violations of the normality assumption, we repeated the
first simulation for data generated from log-normal distributions
and mixtures of two normal distributions. For the former case, we
drew random data for two groups from a log-normal distribution
corresponding to a standard normal on the log scale. To each
observation in the first group, 
�� was added, where � denotes the

true standardized mean difference (� � 0, 0.2, 0.5, 0.8) and ��

represents the standard deviation of the log-normal distribution.
To simulate the mixture case, we followed the procedure em-

ployed by H. Lee and Fung (1980) by generating random data from
a mixture of two normal distributions given by

�N(�1, �1) � (1 � �)N(�2, �2), (13)

where � (� � .9, .7, .5) denotes the probability that an observation
is drawn from N��1, �1�. For the underlying distributions, we
defined �1 � 0, �1 � 1, �2 � 2, and �2 � 2. As in the log-normal
case, 
�� was added to each observation in the first group, with ��

denoting the standard deviation of the mixture distribution.
Results. The empirical error rates of the three test procedures

are displayed in Table 2. Expected sample sizes can be obtained
from the Appendix (Table A2). For ease of comparison, the first
two rows of Table 2 contain results from the first simulation for
normally distributed data (see Table 1, Columns 3, 7, and 10).

In terms of error rates, the examined procedures are quite robust
against violations of distributional assumptions. This is not surprising
as it is in line with Lee and Fung’s results for Hajnal’s t test. Type I
error rates in particular seem to be quite stable for all designs across
all simulated scenarios, although Hajnal’s t test becomes slightly
conservative with increasing effect-size assumption for log-normally
distributed data. In the case of mixture distributions, there is a ten-
dency that Type II error rates for all test procedures decrease with
decreasing kurtosis. Interestingly, however, this is not accompanied
by an increase in expected sample sizes. To summarize, all three
sequential designs show robustness under conditions of non-normality
both in terms of error rates and ASNs.

Heteroscedasticity

Settings. To simulate the case of two populations with un-
equal variance and some standardized mean difference �, we drew
random samples from two normal distributions with �1 � 0, �1 �
1 and

Table 2
Percentages of Type 1 and Type 2 Decision Errors Committed by Hajnal’s t Test, Group Sequential Test, and Sequential Bayes
Factors Under Conditions of Non-Normality

Distribution � s k
Empirical error

rates

� � .2 � � .5 � � .8

SPRT GS SBF SPRT GS SBF SPRT GS SBF

Normal .0 3.0 �� 4.5 5.1 6.3 4.5 5.3 5.8 4.0 5.4 5.8
�� 4.4 5.1 6.4 4.5 4.7 .0 4.1 4.1 .0

Mixture .9 .8 6.0 �� 4.5 3.3 5.5 3.7 4.3 5.1 3.5 4.4 5.1
�� 4.5 3.9 5.6 3.9 3.7 .0 4.1 4.2 .0

.7 .9 4.4 �� 4.6 2.5 6.2 4.2 2.5 4.6 3.7 3.1 4.5
�� 2.9 2.0 4.2 2.9 1.8 .0 2.6 1.8 .0

.5 .7 3.4 �� 2.3 1.2 5.2 3.8 1.5 5.1 4.0 1.7 4.7
�� .8 .4 1.6 1.3 .4 .0 1.4 .3 .0

Log-normal 6.2 116.9 �� 3.9 4.8 4.0 2.7 4.7 3.7 1.8 4.6 3.3
�� 4.6 5.1 6.2 4.1 4.5 .1 3.7 4.5 .0

Note. The first two rows display results from the first simulation for normally distributed data (see Table 1, Columns 3, 7, and 10). Number of repetitions
per parameter combination: k � 10,000. � � mixture probability; s � skewness; k � kurtosis; � � true and expected effect size (Cohen’s d in population);
SPRT � sequential probability ratio test (Hajnal’s t test) assuming d � � and � � � � .05; GS � group sequential design with four tests, assuming d �
� and � � � � .05; SBF � sequential Bayes factor design with threshold 10, assuming r � 	2 ⁄2, 1, 	2 when � � .2, .5, and .8, respectively.
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�2 � 
 ·��2
2 � 1
2 , (14)

with �2 � 1/4, 1, 4 and � � 0, 0.2, 0.5, 0.8. In addition, we
simulated two sampling schemes (H. Lee & Fung, 1980): (a)
pairwise sampling from the two populations such that n1/n2 � 1,
and (b) unbalanced sampling such that at each step for one obser-
vation in the first sample there were always three in the second
sample, that is, n1/n2 � 1/3.

Results. The observed error rates for the three test procedures
under the condition of heteroscedasticity are displayed in Table 3.
The corresponding expected sample sizes can be obtained from the
Appendix (Table A3). If the sample sizes are balanced, Hajnal’s t
test is basically unaffected by heteroscedasticity in the underlying
populations. Although there seems to be a slight tendency that with
increasing expected effect size, the Type I error rate increases as
well, this is likely due to sampling error. In the same vein,
expected sample sizes of Hajnal’s t test are basically constant
irrespective of the variance ratio as long as the group sample sizes
are balanced. Thus, our simulations show that for a balanced
sampling scheme, Hajnal’s t test is robust against violations of
homoscedasticity assumptions.

The GS seems to be quite robust as well (there is virtually no
effect in terms of efficiency), although its empirical Type I error
rates slightly exceed the nominal level. The SBF design is quite
robust when there is an effect (Type II errors), but there is a
noticeable increase in Type I error rates in the case of unequal
variances. Thus, SBFs seem to be affected by heteroscedasticity to
a certain extent even when group sample sizes are balanced.

If sample sizes are unbalanced, Hajnal’s t test and the SBFs are
affected in quite the same manner. If there is homoscedasticity,
error rates do not change, whereas their efficiency is lowered:
Expected sample sizes of both tests increase notably. In the case of
heteroscedasticity, however, both tests show poor Type I error
rates when the sample with larger variance is smaller. This in-
crease in error rates is not surprising, as the pooled variance
estimate will seriously underestimate the true variance if the sam-

ple with larger variance is notably smaller than the other sample.
This, in turn, will result in too large t values and a high number of
false-positive decisions. If the population with larger variance is
overrepresented, on the other hand, both tests become more con-
servative and less efficient.

Interestingly, the GS is affected most seriously by an unbal-
anced design. Whereas Type I error rates are highly conservative
when there is heteroscedasticity and the sample with small vari-
ance is larger, Type II error rates are inflated for all variance ratios.
Hence, independent from heteroscedasticity, the GS design is
strongly affected by unequal sample sizes.

Random Effects

Settings. In the previous simulations, a fixed effect size � was
always assumed. This is a common assumption in psychology;
however, it is also possible to assume that in certain cases, the true
effect is not fixed but in fact random. Hajnal’s t test, like the GS
and the classical t test, specifies a fixed effect size. The default
SBFs, on the other hand, are based on an effect-size prior distri-
bution. Therefore, we investigated the performance of the three
sequential designs when the true effect is in fact sampled from a
distribution.

In this simulation, a population effect size � was randomly
drawn from a normal distribution with �� � 0.2, 0.5, 0.8 and �� �
1 in a first step. Subsequently, random data were drawn from two
normal distributions with �1 � �, �2 � 0 and common standard
deviation � � 1. In the case of H1, the expected effect size in
Hajnal’s t test and the GS was specified as d � ��. In the SBFs,
a Cauchy prior with r � �� was specified. With this setting, the
median expected absolute effect size in the SBFs always matches
the true median effect size (��) and, thus, in contrast to the
fixed-effects simulations, this represents a favorable setting for the
Bayesian test.

Results. The empirical error rates and ASNs can be obtained
from Table 4. Not surprisingly, the error rates of Hajnal’s t test and
the GS are basically equivalent because they make the same

Table 3
Percentages of Type 1 and Type 2 Decision Errors Committed by Hajnal’s t Test, Group Sequential Test, and Sequential Bayes
Factors Under Conditions of Heteroscedasticity

N1/N2 �1/�2

Empirical error
rates

� � .2 � � .5 � � .8

SPRT GS SBF SPRT GS SBF SPRT GS SBF

1 1/4 �� 4.6 4.9 9.8 5.1 5.0 9.5 5.3 6.3 8.6
�� 4.6 4.8 6.2 4.3 4.5 .0 3.5 4.0 .0

1 �� 4.3 5.2 6.5 4.0 5.3 6.0 4.1 5.6 5.5
�� 4.8 4.8 6.0 4.4 4.7 .0 4.1 4.0 .0

4 �� 4.8 5.7 9.8 5.0 5.4 9.3 5.3 6.5 9.3
�� 4.6 4.5 5.9 4.6 4.5 .0 3.7 4.0 .0

1/3 1/4 �� .0 1.0 .1 .0 .8 .2 .1 1.1 .1
�� 1.2 17.2 1.9 1.0 17.1 .0 1.1 16.3 .0

1 �� 4.4 5.1 6.0 3.8 5.0 5.4 3.1 5.6 4.3
�� 4.6 14.5 6.1 4.0 14.4 .0 3.4 13.1 .0

4 �� 38.0 21.3 59.8 36.1 23.7 55.9 34.9 26.6 52.3
�� 6.1 10.2 5.0 5.4 9.8 .1 4.9 9.0 .0

Note. Number of repetitions per parameter combination: k � 10,000. N1/N2 � ratio of sample sizes in Group 1 and 2; �1/�2 � ratio of standard deviations
in Population 1 and 2; � � true and expected effect size (Cohen’s d in population); SPRT � sequential probability ratio test (Hajnal’s t test) assuming d �
� and � � � � .05; GS � group sequential design with four tests, assuming d � � and � � � � .05; SBF � sequential Bayes factor design with threshold
10, assuming r � 	2 ⁄2, 1, 	2 when � � .2, .5, and .8, respectively.
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assumption. However, as this assumption (fixed effect) is violated,
the resulting error rates are seriously inflated. Hence, if the true
effect size is in fact random rather than fixed or at least as large as
expected, neither Hajnal’s t test nor the GS can control the prob-
ability of a decision error.

The SBFs, on the other hand, do not put all prior weight on a
single effect size but a range of effect sizes. Moreover, the prior
expectation is reasonably close to the true situation in this simu-
lation. Thus, error rates for this particular SBF are lower than for
Hajnal’s t test or the GS. Although a direct comparison is difficult
as the designs also differ substantially in ASN, the simulation
demonstrates the advantages of a diffuse prior: If the true effect is
random, a diffuse prior will in general be more robust than a point
prior, particularly if the scale parameter is chosen so that the
prior’s expected median effect size matches the true median effect
size.

Truncation Before a Decision

Settings. Lastly, we address the consequences of possible
misuse. One issue that might be particularly critical in practical
applications of sequential tests is the risk of ending up with
extremely large sample sizes. Obviously, this is not a concern in
the GS design, in which an upper-bound sample size Nmax is
defined a priori. In Hajnal’s t test and the SBF design, on the other
hand, the final sample size is unknown. Therefore, if the sequential
test has not reached a threshold at a certain point, researchers
might choose to truncate it.

From a Bayesian point of view, this is not an issue. The Bayes
factor is a continuous measure of evidence and its interpretation is
unaffected by the stopping rule (Rouder, 2014). Hence, if the SBF
procedure is terminated before reaching an a priori defined thresh-
old, the Bayes factor at this point can still be interpreted (Schön-
brodt et al., 2017). In principle, this is, of course, also possible in
Hajnal’s t test, as it is based on a likelihood ratio. However, this is
not an option if the goal is to make decisions with a priori
controlled error probabilities. Intuitively, it might seem like a
reasonable strategy to truncate the sequential test when the sample
size for a classical Neyman-Pearson test with corresponding error
probabilities is reached, and simply switch to the fixed-sample
procedure at this point. However, as only those samples will be
analyzed for which the sequential procedure has not come to a

decision yet, the sampling distribution of the test statistic at this
point is likely to be distorted. Any statistical inference based on it
will thus be biased.

Therefore, we investigated the impact of this kind of misuse on
the long-run properties of Hajnal’s t test. We replicated the first
simulation and truncated the process whenever the sample size
reached that of a corresponding Neyman-Pearson test (NNP). A
final decision was then made based on the classical t test.

Results. The error rates and ASNs of Hajnal’s t test for a
truncated sampling plan are displayed in Table 5. Additionally, it
displays the proportion of replications that did not accept a hy-
pothesis before reaching NNP. Hajnal’s t test consistently termi-
nates with a sample size smaller than NNP in about 90% of the
cases. Hence, the risk of ending up with a larger sample is small.
Nevertheless, if sampling is terminated in these cases and a deci-
sion is made based on the classical t test, the error rates are no
longer fully controlled. In all cases, the nominal rate is exceeded
by up to two percentage points. At the same time, the reduction in
ASN compared with the open procedure is only slight. To sum-
marize, the truncation strategy is invalid and increases the error
rates beyond their nominal levels. If NNP is used as the point of
truncation, this increase is not dramatic but it is clearly visible and
must not be ignored.

Empirical Example

In this section, we illustrate Hajnal’s t test by applying it to a
real data set. Following Schönbrodt et al. (2017), we chose open
data from a replication of the retrospective gambler’s fallacy
(RGF) in the Many Labs Replication Project (Klein et al., 2014;
https://osf.io/ydpbf/). The RGF, initially reported by Oppenheimer
and Monin (2009), refers to people’s false belief that seemingly
rare outcomes are more likely to stem from a larger number of
trials than seemingly common outcomes. In the experiment, par-
ticipants are asked to imagine walking into a casino and observing
a man rolling a die three times in a row. In the experimental
condition, all dice show 6s, whereas in the control condition, two
of the dice come up 6s and the third die comes up 3. Based on this
scenario, participants are asked to indicate how many times they
think the die had been rolled before they walked into the casino. In
line with the theory, participants in the experimental group typi-

Table 4
Percentage of Type 2 Errors and Expected Sample Size of
Hajnal’s t Test, Group Sequential Test, and Sequential Bayes
Factors for Random Effects

Effect size

SPRT GS SBF

�� ASN �� ASN �� ASN


 
 N�0.2, 1� 8.5 278 8.5 518 2.4 1042

 
 N�0.5, 1� 18.6 88 18.6 112 5.1 370

 
 N�0.5, 1� 23.6 46 23.5 52 7.0 198

Note. Number of repetitions per parameter combination: k � 10,000.
SPRT � sequential probability ratio test (Hajnal’s t test) assuming d � ��

and � � � � .05; GS � group sequential design with four tests, assuming
d � �� and � � � � .05; SBF � sequential Bayes factor design with
threshold 10, assuming r � ��; �� � empirical error rates; ASN � average
sample number (n1 � n2).

Table 5
Percentage of Type 1 and 2 Decision Errors and Expected
Sample Size of Hajnal’s t Test When Truncated at NNP

� d ��/�� ASN NNP % NP

.0 .2 6.9 800 1,302 9.1
.5 6.7 134 210 10.6
.8 6.0 54 84 10.4

.2 .2 6.5 652 1,302 8.7

.5 .5 6.4 112 210 9.9

.8 .8 5.7 48 84 10.5

Note. Number of repetitions per parameter combination: k � 10,000.
Nominal error rates: � � � � .05. � � true effect size (Cohen’s d in
population); d � expected effect size; ��/�� � empirical error rates;
ASN � average sample number (n1 � n2); NNP � total sample size
required by a Neyman-Pearson t test assuming � � d and � � � � .05; %
NP � proportion of truncations at NNP.
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cally indicate a larger number of rolls than in the control condition.
In the original study, Oppenheimer and Monin reported an effect
size of Cohen’s d � 0.69, 95% CI [0.16, 1.21]. In the replication
study, the effect was reproduced with a total sample of N � 5, 942
participants, Cohen’s d � 0.63, 95% CI [0.57, 0.68].

Following the safeguard power analysis procedure proposed by
Perugini, Gallucci, and Costantini (2014), a replication of the RGF
should not be based on the original effect-size estimate. Rather,
one should assume, for example, the lower limit of the 80% CI of
the original effect-size estimate, that is, ds � 0.34. Thus, a repli-
cation based on a standard two-sided Neyman-Pearson t test with
� � .05 and a power of 1 � � � .95 would require a total sample
of 452 participants (Faul, Erdfelder, Buchner, & Lang, 2009). We
applied Hajnal’s t test with the same specifications to the data, that
is, d � 0.34 and � � � � .05.

The outcome and efficiency of a sequential test depends on the
sequence of observations analyzed. To avoid the impression of
choosing a particular sequence, we applied the test to the data in
the sequence in which they are listed in the data set. This resembles
the actual application of a sequential t test, as data should be
analyzed in the exact sequence in which they are sampled. Figure
3 depicts the development of the log-likelihood ratio of Hajnal’s t
test across the sampling process. Starting at N � 3, the test stops
sampling at a total sample size of N � 87 with LR87 � 19.84. This
ratio indicates that the data are about 20 times more likely under
H1 than under H0, which exceeds the boundary value A � (1 �
�)/� � 19. Thus, we accept the alternative hypothesis: Participants
in the RGF group indicated longer sequences (M � 3.55, SD �
2.93) than participants in the control group (M � 2.06, SD � .98),
Cohen’s d � 0.69, 95% CI [0.26, 1.12].6 Compared with the
sample size required by the standard Neyman-Pearson t test,
Hajnal’s t test tested the same hypothesis with the same error
probabilities about 80% more efficiently.

Discussion

Hypothesis testing is an integral part of science (Morey, Rouder,
Verhagen, & Wagenmakers, 2014). It does not necessarily take the
form of a dichotomous decision in favor of one of two specified
hypotheses. In a Bayesian framework, for example, researchers
may aim at an assessment of posterior probabilities rather than a
discrete decision. Some authors even call for a shift away from
hypothesis testing to inference based on estimation (Cumming,
2014; Halsey, Curran-Everett, Vowler, & Drummond, 2015;
Tryon, 2016). Nevertheless, scientific discovery requires a princi-
pled, critical evaluation of whether or not a theory’s predictions
hold (Morey et al., 2014; Popper, 1968). For many scientists, this
is represented by a binary decision to either accept or reject a
hypothesis derived from the theory. As long as this decision is
accompanied by an estimate of the strength of the effect, it does
not conflict with the overarching aim of science to generate cu-
mulative knowledge.

When conceiving statistical inference as decision making under
uncertainty, error probabilities in statistical decisions must not be
ignored, irrespective of the statistical framework used for making
inferences (Lakens, 2016). Hence, employing test procedures and
stopping rules that allow for error probability control is pivotal for
the scientific endeavor. However, when applying statistical tests
researchers also face practical constraints such as limited re-

sources. This has led to a widespread neglect of statistical power
and invited a number of questionable practices, which played their
part in the development of the reproducibility crisis in psychology
(Bakker, van Dijk, & Wicherts, 2012; Simmons et al., 2011). Thus,
in order to improve current statistical practice, sensible and effi-
cient alternatives are needed, for example, sequential methods.
Although sequential hypothesis tests have been proposed to the
field of psychology in the past, their application is still surprisingly
scarce in experimental research (Botella et al., 2006; Lakens, 2014;
Lang, 2017).

Herein, we promote the use of the SPRT for testing precise
hypotheses about mean differences between two independent
groups with high efficiency and reliable control of error probabil-
ities. The SPRT is not new. In fact, the general theory and its
extensions as well as the mathematical simplifications this article
builds upon have been developed more than half a century ago
(Wetherill, 1975). This notwithstanding, we see three important
practical and theoretical contributions of our work to psychologi-
cal science.

First, in light of the ongoing reproducibility crisis, we want to
introduce the SPRT to psychologists as a statistically sound and
efficient alternative to the currently dominating procedure. The
field is more than ever aware of the value and the need for
sufficiently powered replications (Bakker et al., 2012; Lakens,
2014). Sequential methods control the probabilities of statistical
decision errors while allowing for early decisions whenever the
test statistic exceeds one of the boundary values, thus making
optimal use of available resources. We have demonstrated the
excellent properties of the SPRT for the typical two-sample t test
scenario and how it is easily implemented in standard statistical
software. Additionally, we created a simple, user-friendly R script
to facilitate the application of the sequential tests promoted herein.
Thus, the SPRT is an easy-to-apply procedure that benefits both
the individual researcher and the entire field of psychology by
increasing efficiency and reliably controlling error probabilities.

Second, we extended the comparison of SBFs and the GS design
by Schönbrodt et al. (2017) and included the SPRT. We showed
that the SPRT is more efficient not only than the GS but also than
SBFs for a correctly specified hypothesis. However, it is not our
intention to take a stance in the somewhat ideological quarrel
between different schools of statistical inference. We merely point
out the SPRT as an alternative to SBFs that (a) is more efficient
when the alternative hypothesis corresponds to a point hypothesis,
and (b) allows for explicit control of error probabilities. If the
psychological hypothesis of interest is in fact best represented by
a prior distribution rather than a point mass, we endorse the use of
a correspondingly specified likelihood ratio such as the Bayes
factor implanted in SBFs. In the same vein, if the research goal is
to quantify evidence and assess posterior probabilities, SBFs (or
generally, the Bayes factor) are the way to go. However, the
standard SBF design does not allow for explicit control of error
probabilities, which is a notable limitation. If error probability
control is essential, the SPRT might constitute a better alternative.

6 Note that this estimate of Cohen’s d as well as the CI are based on the
assumption of a fixed sample size and, thus, might be biased toward an
overestimation of the true effect size. See the Discussion section for details.
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Third, whereas extensive work has been done on elaborating the
properties of the SPRT for simple hypotheses (Matthes, 1963;
Sobel & Wald, 1949; Wald, 1947; Wald & Wolfowitz, 1948), little
is known about its performance when adapted to the case of
complex composite hypotheses (Cox, 1952; Köllerström & Weth-
erill, 1979; Wetherill, 1975). Introducing the SPRT for the two-
sided two-sample t test, Hajnal (1961) stated that “there is no
known method of computing the average number of observations
needed for sequential tests of composite hypotheses” (p. 72). Thus,
to our knowledge, our simulations constitute the first study to
demonstrate the properties of Hajnal’s t test for such a wide range
of population scenarios and without relying on mathematical ap-
proximations to the likelihood ratio. Moreover, we examined its
robustness against a number of violations of its basic assumptions
and compared this with the robustness of SBFs and the GS design.
To summarize our results, in a balanced design and when the effect
size is not grossly misspecified, Hajnal’s t test is highly efficient
and quite robust even under conditions of non-normality or het-
eroscedasticity.

Limitations

There are some possible limitations of our work that apply to
sequential procedures in general, whereas others are specific for
the test we promote in this article. First, some critics might object
that the SPRT requires a precise specification of both the null and
the alternative hypothesis (i.e., a precise prediction of the effect
size). Ideally, this prediction follows from an underlying theory;
however, it is frequently argued that researchers do not have
realistic effect-size assumptions (Gelman & Carlin, 2014; Perugini
et al., 2014). If there is no information in the literature such that an
effect-size estimate could be based on a review or meta-analysis,
this may indeed seem like a severe drawback. However, it is
important to keep in mind that the effect-size assumption under H1

is not necessarily an attempt to guess the true effect that underlies
the data. Alternatively, it can be seen as specification of an effect
that the researcher “deem[s] worthy of detecting” (Schulz &
Grimes, 2005, p. 1350). Thus, the need to specify a precise
hypothesis should not be considered detrimental. After all, a hy-
pothesis test is, by definition, the test of a prediction—why would
we demand it to work without specifying one? NHST is an
inglorious example of the critical consequences of employing a
test without specifying a precise alternative to the null hypothesis.

It is true, however, that the SPRT will be less efficient or may
lead to wrong decisions more often when the effect size is grossly
under- or overspecified, respectively. At the cost of efficiency, the
SBF design is more robust against such misspecifications to a
certain extent. However, this does by no means imply that one
need not define a sensible statistical hypothesis: If the prior allo-
cates undue mass to effect sizes that differ substantially from the
true effect, the resulting test procedure will also perform poorly in
terms of asymptotic error rates and efficiency. In sum, sensible
hypothesis tests require reasonable and precise statistical hypoth-
eses; the more precise a hypothesis, the more critical and efficient
is its test (Stefan et al., 2019).

Second, the SPRT is an open procedure, that is, it requires
sampling until a decision is made. It cannot be ruled out a priori
that the data do not yield strong evidence in favor of any hypoth-
esis such that the test goes on for thousands of observations.
However, our results indicate that the risk of extremely large
sample sizes in Hajnal’s t test is small, although such events are
possible in principle. Obviously, this is a potential risk in any open
sequential design, SPRT and SBFs alike. Next to the GS design,
there have been suggestions in the literature to modify sequential
procedures such that they definitely terminate at or before a certain
sample size Nmax (Armitage, 1957; T. W. Anderson, 1960). How-
ever, as the comparison with the GS demonstrated, these restricted

N  = 3

N  = 87Accept H1

Accept H0

Continue
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Figure 3. Development of the log-likelihood ratio for Hajnal’s t test on the replication data of the retrospective
gambler’s fallacy (Klein et al., 2014). The test terminates sampling after N � 87 observations with a decision
in favor of H1. The upper and lower dashed lines represent the decision boundaries ln(A) and ln(B), respectively.
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tests are not optimal, that is, they either are less powerful or come
with higher ASNs than open sequential designs (Wetherill, 1975).

Because the SPRT is based on a likelihood ratio, like SBFs,
it is possible to define an Nmax at which sampling terminates
even if no boundary is reached. One could then report the
likelihood ratio at Nmax. However, such a procedure cannot be
used for dichotomous decisions with controlled error probabil-
ities, because error probabilities would be larger to an unknown
degree than those of the open sequential test. Specifically, the
smaller Nmax at the point of termination, the higher the extent to
which the error probabilities of the truncated test exceed those
of the open test (Wetherill, 1975). In the same vein, we dem-
onstrated with our simulations that it would be ill-advised to
administer a standard fixed-sample test after a sequential test
failed to find a decision within the sample size defined by an a
priori power analysis. Hence, it is important to either continue
until a boundary is reached or terminate without a definite
decision and report the observed likelihood ratio only.

So far, our discussion focused only on the properties of sequen-
tial designs as efficient and accurate procedures to decide between
two statistical hypotheses. As elucidated at the outset of the dis-
cussion, deciding in favor of a hypothesis is not the only means of
statistical inference. It merely represents the process of accepting
the data as corroboration or refutation of a prediction of interest.
However, the scope of information in the data goes beyond this
binary decision and should be conveyed in the form of effect-size
estimates. Herein, we did not explicitly address the issue of effect-
size estimation following the sequential procedure because it is not
unique to the SPRT and has been addressed before (e.g., Emerson
& Fleming, 1990; Fan, DeMets, & Lan, 2004; Goodman, 2007;
Mueller, Montori, Bassler, Koenig, & Guyatt, 2007; Schönbrodt &
Wagenmakers, 2018; Schönbrodt et al., 2017; Stallard, Todd, &
Whitehead, 2008; Whitehead, 1986; Zhang et al., 2012).

The difficulty of estimation following a sequential test resulting
in acceptance of H1 arises from the fact that the evidence in the
data, which is reflected in the effect-size estimate, determines the
sample size. Strong evidence for H1 will result in early stopping,
whereas weaker evidence will lead to larger samples. Hence, the
sampling distribution of effect-size estimates will be distorted
considerably, with small samples systematically overestimating
and large samples systematically underestimating the true effect of
interest (Whitehead, 1986; Zhang et al., 2012).

However, a closer look reveals that this apparent drawback is
not as serious as it may seem (Goodman, 2007; Schönbrodt &
Wagenmakers, 2018): The overestimation of effect sizes by only
considering early terminations at H1 is comparable with the over-
estimation of effect sizes caused by publication bias (see Ulrich,
Miller, & Erdfelder, 2018). That is, it is based on a loss of
information rather than the sequential nature of the test procedure
itself. When aggregating across early and late terminations, the
bias—although it remains—is reduced and might be considered
negligible (Schönbrodt & Wagenmakers, 2018). Moreover, the
SPRT should be less prone to publication bias than NHST because
it allows for acceptance of both hypotheses. Hence, meta-
analytical effect-size estimates taking into account sample sizes
and estimates from both early and late terminations in favor of H1

or H0 will basically be unbiased (see Schönbrodt et al., 2017).

Practical Recommendations

The SPRT we promote in this article can easily be set up with
any statistical software in which the probability density functions
of t or F are provided or can be implemented. A workable,
user-friendly R script to perform Hajnal’s t test can be downloaded
from the Open Science Framework (https://osf.io/4zub2/). Herein,
we explicitly addressed the case of testing two-sided hypotheses
for two independent groups. The script additionally can be used to
perform a sequential t test for one-sided hypotheses as well as
hypotheses about a single or two dependent groups. Note, how-
ever, that the expected sample sizes observed in our simulations
apply only to the two-sided two-sample scenario (Hajnal’s t test).
Smaller ASNs can be expected for one-sided hypotheses and
dependent observations.

As noted earlier, there are different ways to specify a sensible
alternative hypothesis. Ideally, one has a precise prediction im-
plied by a psychological theory. However, we acknowledge that
this is not always the case. If an effect-size assumption is based on
previous estimates in the literature, it makes sense to take the
uncertainty of these estimates into account and assume a lower-
bound effect size to ensure a sufficiently powered test (Perugini et
al., 2014). Similarly, in total absence of any information or precise
prediction, one should specify a minimum relevant effect dmin to
obtain a power of at least 1�� for the SPRT to detect an effect

 
 dmin. Note, however, that a conservative effect-size assump-
tion will result in a less efficient test.

To make sure that error rates as specified by � and � are not
exceeded, the data need to be analyzed in the sequence in which
they have been sampled. This must be continued until the inequal-
ity B 
 LR 
 A is violated, resulting in a decision for one of the
two hypotheses of interest. Hajnal’s t test does not require pairwise
sampling in general (H. Lee & Fung, 1980). Participants can be
randomly allocated to a group and the data can be analyzed after
each additional observation irrespective of the relative group sizes,
as long as there are at least three observations in total and at least
one in each group. However, we strongly recommend a balanced
design as this will increase the test’s efficiency and robustness in
case of heteroscedasticity (see the Robustness of SPRT, GS, and
SBFs section).

In sum, when testing hypotheses with the SPRT one should
adhere to the following simple steps:

1. Specify the statistical hypotheses (e.g., the to-be-detected
minimal effect size d) and the desired upper bounds to the
error probabilities of the test (�, �) before the sampling
process. Do not alter these specifications during the sam-
pling process in response to the data observed.

2. Analyze the data in the sequence in which they have been
sampled. This sequence must not be altered to obtain a
specific result (e.g., by dropping unwanted observations).
Observations may be added and analyzed in groups rather
than separately. However, this may result in a decrease of
error probabilities and, correspondingly, efficiency.

3. Continue sampling as long as �/(1 � �) 
 LR 
 (1 �
�)/� and terminate as soon as this inequality is violated,
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resulting in a decision in favor of H0 if LR 	 �/(1 � �)
or H1 if LR 
 �1 � �� ⁄�.

Conclusion

Sequential analyses are useful tools to conduct sufficiently
powered hypothesis tests with minimal costs in terms of time and
observations needed. Particularly in light of the ongoing reproduc-
ibility crisis, these are highly desirable features that could benefit
both individual researchers and the entire field of psychological
science (Lakens, 2014). We showed that the SPRT is not only
easily applied to the common t test scenario but also more efficient
than other common sequential designs. Additionally, the SPRT
allows for specifying reliable upper bounds to decision error
probabilities.

We do not promote the SPRT as the single optimal inference
procedure for all situations. After all, statistics is not a single tool
that fits all problems but a toolbox that contains several procedures
suited for different situations. Depending on the aim of the re-
searcher and the problem at hand, some research questions may
better be approached using a fixed-sample design, and others by a
different sequential design such as SBFs, GS, or adaptive designs
(Lakens & Evers, 2014). With this article, we hope to expand the
scope of psychologists’ statistical toolboxes by proposing the
SPRT as an efficient alternative to conventional methods of con-
trolling statistical decision errors.
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Table A2
Expected Sample Sizes of Hajnal’s t Test, Group Sequential Test, and Sequential Bayes Factors Under Conditions of Non-Normality

Distribution � s k True state

� � .2 � � .5 � � .8

SPRT GS SBF SPRT GS SBF SPRT GS SBF

Normal .0 3.0 H0 832 1,040 834 138 170 426 56 68 216
H1 690 932 770 120 150 134 50 60 58

Mixture .9 .8 6.0 H0 834 1,036 832 140 170 432 58 68 222
H1 674 914 748 114 144 130 48 58 54

.7 .9 4.4 H0 830 1,018 822 140 166 434 58 68 218
H1 626 872 698 108 140 118 46 54 48

.5 .7 3.4 H0 794 994 732 138 162 384 58 66 204
H1 562 832 612 96 134 104 42 52 46

Log-normal 6.2 116.9 H0 860 1,040 886 146 172 454 60 70 232
H1 642 892 682 94 132 96 36 48 36

Note. Depicted are expected total sample sizes (n1 � n2). The first two rows display results from the first simulation for normally distributed data (see
Table A1, Columns 3, 7, and 10). Number of repetitions per parameter combination: k � 10,000. � � mixture probability; s � skewness; k � kurtosis;
� � true and expected effect size (Cohen’s d in population); SPRT � sequential probability ratio test (Hajnal’s t test) assuming d � � and � � � � .05;
GS � group sequential design with four tests, assuming d � � and � � � � .05; SBF � sequential Bayes factor design with threshold 10, assuming r �
	2 ⁄2, 1, 	2 when � � .2, .5, and .8, respectively; H0, H1 � true state underlying data generation.

Table A3
Expected Sample Sizes of Hajnal’s t Test, Group Sequential Test, and Sequential Bayes Factors Under Conditions
of Heteroscedasticity

N1/N2 �1/�2 True state

� � .2 � � .5 � � .8

SPRT GS SBF SPRT GS SBF SPRT GS SBF

1 1/4 H0 832 1,028 797 137 166 410 56 67 204
H1 683 924 738 116 148 129 49 58 54

1 H0 834 1,024 820 139 166 416 57 67 212
H1 688 926 770 119 149 133 50 59 57

4 H0 831 1,023 784 137 167 408 56 67 210
H1 687 928 744 115 149 128 49 58 53

1/3 1/4 H0 993 935 914 164 152 454 67 62 232
H1 1,471 1,213 1,871 240 195 282 99 77 112

1 H0 1,115 1,027 1,112 185 166 573 77 68 292
H1 916 1,025 1,044 157 166 186 68 65 78

4 H0 875 1,025 507 152 164 286 65 65 164
H1 533 792 321 95 127 81 42 49 39

Note. Depicted are expected total sample sizes (n1 � n2). Number of repetitions per parameter combination: k � 10,000. N1/N2 � ratio of sample sizes
in Group 1 and 2; �1/�2 � ratio of standard deviations in population 1 and 2; � � true and expected effect size (Cohen’s d in population); SPRT �
sequential probability ratio test (Hajnal’s t test) assuming d � � and � � � � .05; GS � group sequential design with four tests, assuming d � � and � �
� � .05; SBF � sequential Bayes factor design with threshold 10, assuming r � 	2 ⁄2, 1, 	2 when � � .2, .5, and .8, respectively; H0, H1 � true state
underlying data generation.
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